Soil compaction and strength; measurement methods and influences on perennial grass growth.

Susan Edinger Marshall, Humboldt State University

Allison Tokunaga, NRCS

June 28, 2006

Outline

- Definitions
- Limits to plant growth
- Tokunaga's study;
 Methods &Results
- Discussion

Source: USDA-NRCS Plant Materials Program

Soil Compaction

- Increasing the soil bulk density, and concomitantly decreasing the soil porosity, by the application of mechanical forces to the soil. (SSSA)
- Commonly expressed as g/cm³ (or lbs/ft³)

Direct measure of soil compaction - Bulk Density (Db)

- The mass of dry soil per unit volume
- <2 mm fraction of soil, no coarse fragments

Soil Strength Penetration Resistance (PR)

- Capacity of a soil to resist a force without rupture, fragmentation, or flow
- Resistance to penetration by roots
- Affected by several factors, including soil moisture (lubrication)

Limits to plant growth

Root limiting bulk densities...

- Compaction studied most often in agriculture
- Taproot species or C₄ (warm-season) grasses
- Root-limiting bulk densities...
 - 1.5 g cm⁻³ fine textures
 - 1.9 g cm⁻³ coarse textures
 - No single critical bulk density apparent in literature

Limits to plant growth, cont.

Root-limiting soil strength...

- 2.5 to 3 MPa (363 to 435 psi)
- 6 to 7 MPa (coarse soils)
- Strength varies with both bulk density and water content – in rangelands it may vary with season
 - e.g., denser and drier = increased strength

Limits to plant growth, cont.

Besides physical root impedance, compaction can lead to...

- Decreased infiltration
- Slower water and gas movement
- Typically the uppermost 10 cm tend to be compacted by grazing animals (compared to deeper seated compaction by heavy equipment, glaciers, etc.)

Tokunaga's Research Questions (M.S. thesis at HSU)

 How does root and shoot biomass production vary over a range of bulk density and soil strength?

 Is there a threshold bulk density and/or soil strength that limits biomass production of roots and/or shoots?

Study Site

- Nixon Ridge
- Annual vegetation
- Blue wildrye
- Oak woodland
- Grazed

Greenhouse Methods

- Surface soil collected from Nixon Ridge and sieved to <2 mm
- 3 bulk densities
 - "loose" = 1.00 g cm⁻³
 (gopher mounds and/or high litter content)
 - "medium" = 1.25 g cm⁻³
 - "dense" = 1.55 g cm⁻³ (previous studies)
 - Compacted using ASTM protocols

Greenhouse Methods cont.

- 3 water potentials
 - "wet" = -33 kPa (field capacity)
 - "moist" = -500 kPa (moderate water stress)
 - "dry" = -1500 kPa (permanent wilting point)
 - Maintained 3 days a week

Greenhouse set-up

about 4 months growth of Blue Wildrye (perennial, cool season), rotated and watered 3x week, randomized weekly n=25 for each Db/moisture combination

Dry

Moist

Wet

Greenhouse Variables

Shoot biomass

 clipped and dried

Root biomass
 washed and dried

Soil strength > penetrometer

hydraulic press

Root depth
 split core

RESULTS

 Different letters (a, b, c) indicate significant differences at p=0.05 using Analysis of Variance

Shoot Biomass

n = 25

Bulk density (g cm⁻³)

Root Biomass

n = 9

Bulk density (g cm⁻³)

Roots and Shoots

Treatment

19

Maximum Root Depth

PR—Penetrometer

n = 21

PR—Hydraulic Press

n = 4

Discussion

Soil Strength Methods

Treatment

PR and Roots—Penetrometer

Highest root biomass							Lowest root biomass				
Depth (in)	Med- moist	Med- wet	Loose -moist	Loose -wet	Loose -dry	Med- dry	Dense -moist	Dense -wet	Dense -dry		
0						2.7	na	na	na		
1	2.6					2.7	na	na	na		
2	2.8					3.1	na	na	na		
3	2.8					2.8	na	na	na		
bottom							na	na	na		

PR and Roots—Hydraulic Press

Highest root biomass						Lowest root biomass				
Depth (in)	Med- moist	Med- wet	Loose -moist	Loose -wet	Loose -dry	Med- dry	Dense -moist	:	Dense -dry	
0										
1						2.8	5.1	3.1	8.7	
2	4.9	2.6				5.5	13.0	7.7	17.9	
3	6.4	3.5				6.4	14.0	9.6	15.5	
bottom										

Summary—Roots

- Lower root biomass production :
 - Higher bulk density
 - Higher soil strength
 - Shallower root depth
- Higher root biomass production:
 - Lower water stress
 - Can have higher soil strength

Summary—Roots

 Roots penetration and biomass production can potentially be high over a wide range of soil strength above 2.5 MPa

PR and Shoots—Penetrometer

Highest shoot biomass						Lowest shoot biomass				
Depth (in)	Med- wet	Med- moist	Loose -wet	Loose -moist	Dense- wet	Loose -dry	Dense -moist	Med- dry	Dense -dry	
0					na		na	2.7	na	
1		2.6			na		na	2.7	na	
2		2.8			na		na	3.1	na	
3		2.8			na		na	2.8	na	
bottom										

PR and Shoots—Hydraulic Press

Highest biomass						Lowest biomass					
Depth (in)	Med- wet	Med- moist	Loose -wet	Loose -moist	Dense -wet	Loose -dry	Dense -moist	Med- dry	Dense -dry		
0											
1					3.1		5.1	2.8	8.7		
2	2.6	4.9			7.7		13.0	5.5	17.9		
3	3.5	6.4			9.6		14.0	6.4	15.5		
bottom									30		

Summary—Shoots

- Higher shoot biomass production:
 - Lower water stress
 - Deeper root depth
 - Can have higher soil strength
- Similar shoot production occurs under contrasting belowground conditions

Field Relevance and Conclusions

General trend in biomass production:

- Increasing bulk density and soil strength decreases biomass production and root penetration
- High production and deep root penetration can occur in soils that exceed 2.5 MPa
- Effects possibly moderated by water availability

Field Relevance and Conclusions

- Is there a threshold bulk density or soil strength?
- Similar production can occur across a range of bulk densities.
- A wide range of soil strength data were obtained using different instruments provides a range of soil strengths associated with lower production.

Field Relevance and Conclusions

- Physical difficulty in obtaining quantitative data on very compacted and strong soils (and these didn't have rocks!)
- Penetrometer
 - Useful under agricultural conditions
 - Less useful on rangeland conditions
- Hydraulic press
 - For dense and strong soils
 - Of little field value
- Wide range of measurements

Final Thoughts

- Tate et al. (2004) REM 57(4):411-417 took 1,489 bulk density samples at SJER to tease out the effects of grazing management, RDM and other site factors.
- The interactions of bulk density, strength and moisture status are important for annual plants that 'regerminate' and grow annually.

Final Thoughts

These same interactions influence perennial grasses differently...

- High Db and strength can limit soil volume exploited by roots for water and nutrients (critical for year-to-year survival).
- As long as water is available, grass roots penetrate beyond what has been recorded for many agricultural crops.
- High bulk density may be more important in terms of water infiltration and deep percolation compared to physical impedance to root growth in field settings.