Soil fertility management for pepper production

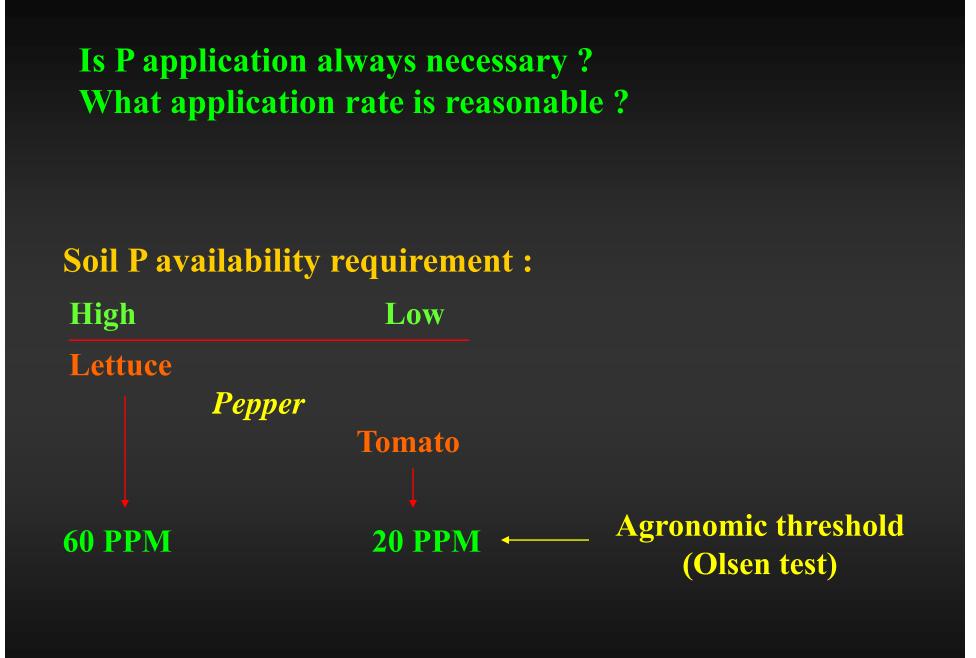
Typical nutrient uptake by a bell pepper crop producing 50,000 lb of fruit/acre :

	lbs per acre		
	Ν	P ₂ O ₅	K ₂ O
total plant content	200 - 260	40 - 60	240 - 320
fruit content	80 - 110	20 - 30	120 - 180

additional fruit at $\approx 3 \text{ lb} / \text{ton}$

Phosphorus requirement for pepper :

Common soil tests for P availability :


Olsen (bicarbonate) test - extraction in sodium bicarbonate at pH 8.5 best method if soil pH > 6.5

Bray test - extraction in dilute acid useful in acidic soil (pH < 6.5)

Bray values higher than Olsen in most cases

Is P application always necessary ? What application rate is reasonable ?

Soil P availability requirement : High Low Lettuce Pepper Tomato

Olsen P level	Pepper response to applied P
< 20 PPM	positive response guaranteed
20 - 40 PPM	positive response possible, especially in cold soil
> 40 PPM	positive crop response unlikely

Olsen P level	Pepper response to applied P
< 20 PPM	positive response guaranteed
20 - 40 PPM	positive response possible, especially in cold soil
> 40 PPM	positive crop response unlikely

Application rate ?

limit application to crop removal rate in fields with high soil P
 rates > 120-150 lb P₂O₅/acre questionable, regardless of soil test level

Nitrogen management :

Crop N uptake is predictable by growth stage

lb N per acre per day:

< 1

4 - 5

Nitrogen management :

Crop N uptake is predictable by growth stage

lb N per acre per day:

- Not all N needs to come from fertilizer application:
 residual soil NO₃-N can be substantial
 - soil N mineralization can be up to 1 lb / acre / day



Excessive N application generally not an agronomic problem, but can be an environmental problem :

Environmental targets for N concentration in groundwater is 10 PPM NO₃-N; for surface water may be as low as 1 PPM

Any water that escapes a pepper field is likely to greatly exceed environmental targets

Irrigation efficiency and N management :
 ▶ at common soil NO₃-N levels during the season, one inch of leaching may carry 20-30 lb NO₃-N/acre out of the root zone

that water may be 10 times the Federal drinking water standard of 10 PPM NO₃-N

Potassium management :

Crop K uptake is predictable by growth stage

lb N per acre per day:

<

4 - 7

Potassium management :

Crop K uptake is predictable by growth stage

lb N per acre per day:

- pepper has a moderately high K requirement (240 320 lb K₂O/acre)
- majority of K ends up in fruit
- >leaf K declines to 'feed' the fruit; that's why deficiency shows late

Evaluating soil K supply :

- 'exchangeable' K, usually expressed as PPM
- **K** as a % of base exchange

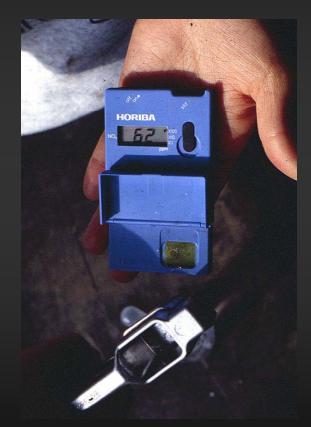
[milliequivalent of K / (meq Ca + Mg + Na + K)] x 100

Soil test K interpretation :

- fields > 200 PPM exchangeable K, and > 3% of base exchange, do not require K fertilization
- soils < 150 PPM, or < 2% of base exchange, should be fertilized</p>
- K fertilization is most effective during fruit set and early fruit development

Crop monitoring options In-season soil nitrate testing :

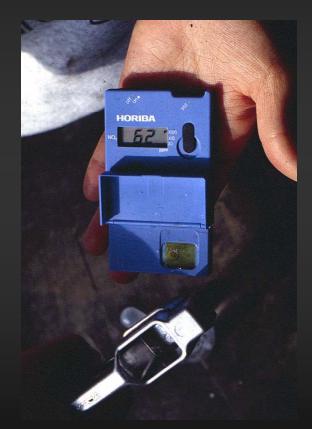
high root zone soil NO₃-N concentration (> 20 PPM) indicate that additional N application can be postponed



Soil nitrate testing most useful early in the season

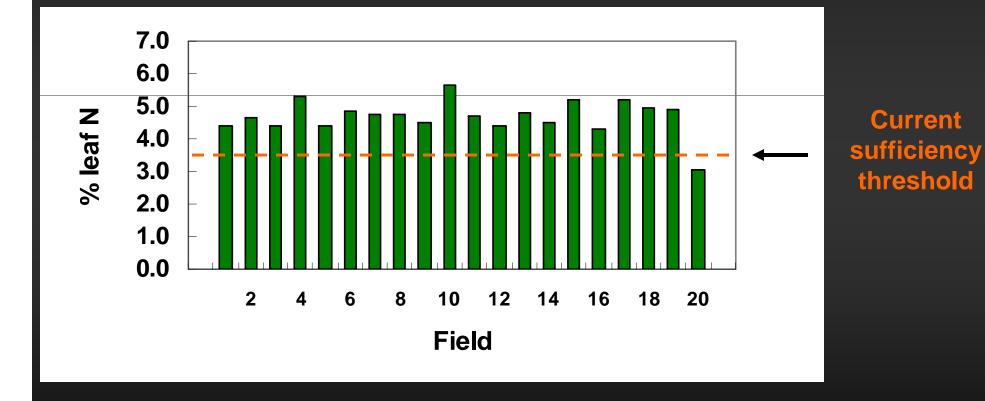
Petiole testing as a management tool ?

high NO₃-N or PO₄-P concentration guarantees *current* sufficiency, but does not project far into the future

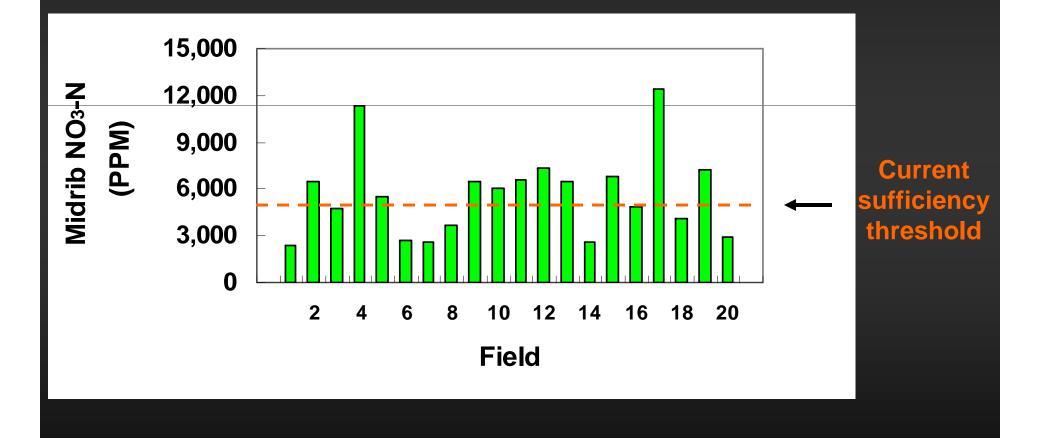


Petiole testing as a management tool?

high NO₃-N or PO₄-P concentration guarantees *current* sufficiency, but does not project far into the future
 Iower NO₃-N or PO₄-P concentration *does not prove deficiency*



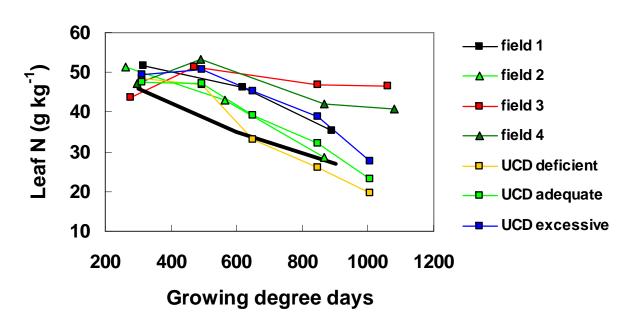
2004-05 survey of 75 coastal lettuce fields


at early heading stage :

Leaf total N of the 20 highest yielding fields ...

at early heading stage :

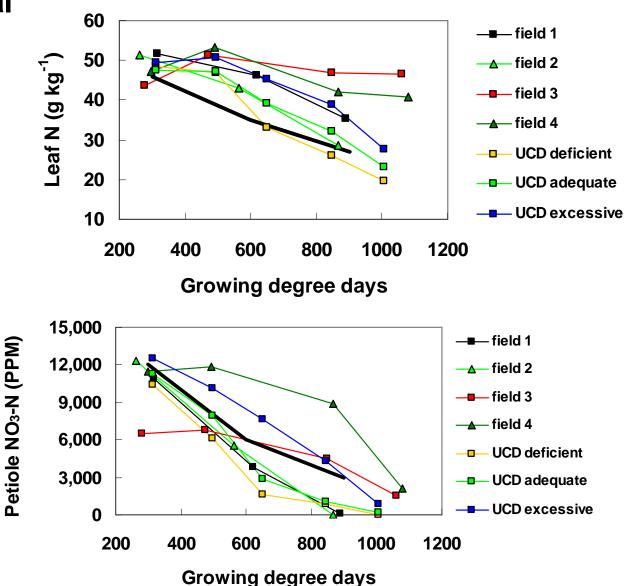
Midrib NO₃-N of the 20 *highest yielding fields* ...



Tissue sampling in processing tomato :

- ✓ 4 high yield commercial fields
- UCD fertilizer trial

Tissue sampling in processing tomato :


- ✓ 4 high yield commercial fields
- ✓ UCD fertilizer trial

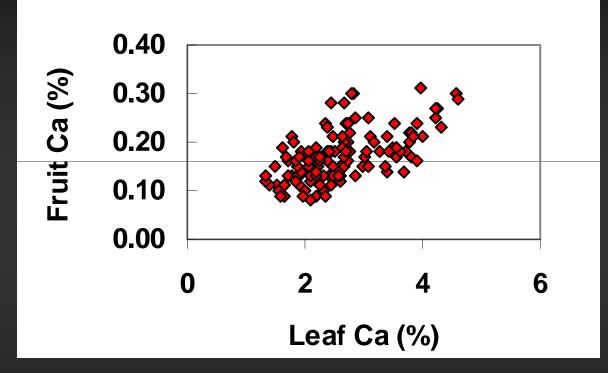
Tissue sampling in processing tomato :

✓ 4 high yield commercial fields

✓ UCD fertilizer trial

Calcium disorders :

symptoms develop because insufficient Ca is moved into actively growing cells during fruit development



Calcium disorders :

 symptoms develop because insufficient Ca is moved into actively growing cells during fruit development
 origin of the problem is the inefficient way plants move Ca into fruit; soil Ca limitation seldom the primary problem

Calcium doesn't move into fruit easily :

Processing tomato fruit quality survey, 140 fields :

Ca moves in transpirational flow in xylem, so leaf Ca is high
 Ca does not move in phloem, so fruit Ca is low; surface wax on fruit makes foliar application questionable

What can be done to minimize calcium disorders ?

- prevent water stress
- choose adapted varieties
- ✓ avoid high ammonium levels during early fruit development

