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In calibration experiments, a number of samples of known
concentration are used to establish the relationship
between a measured response and sample concentration;
this relationship is then used to estimate the unknown
concentration of further samples from their measured
responses. In addition to the estimates themselves, it is
useful to have available some measure of their precision,
usually given in the form of confidence limits. The
standard method of inverting prediction limits is found
to work well in simple situations, but in nonlinear mul-
tivariate calibration it becomes intractable. The bootstrap
offers an alternative methodology, but in the calibration
framework its application is not obvious. We describe
some considerations in bootstrapping calibration data and
compare our methods with a previous attempt and with
the standard method in linear, nonlinear, and multivariate
situations. The bootstrap is found to be a useful tool in
those situations where the standard method is difficult
to implement.

Here we consider an assay method that delivers a response Y
dependent upon the sample concentration x. Experimental error
implies that Y is random, but we assume that its relationship to x
has the form

where f is a function, assumed known, describing the relationship,
θ is a vector of unknown parameters, and ε is an error term, which
might be assumed to follow some known distribution. For
example, in the simple linear case we might have

where a and b are the unknown intercept and slope parameters
and ε follows a normal distribution with constant variance and
zero mean.

In calibration, we first take n observations (xi,Yi), where the xi

are known “standard” concentrations prechosen to cover the
required range of the assay. These standards are used to produce
a calibration curve by estimating the parameter θ in eq 1, using
some form of regression technique. Thus, the equation of the
calibration curve is

where θ̂ is the regression estimate of the parameters. If we now
have the response Y0 from an additional sample with unknown
concentration x0, we can invert the calibration eq 3 to get an
estimate X̂0 for x0. In the case of the simple linear model (eq 2),
we get

In practice, it is usual to have a small number of replicates of the
unknown, yielding responses Y01...Y0r, where r denotes the number
of replicates. In this case, an appropriate mean value can be used.

The standard method of producing a confidence interval is
attributed to Fieller.1 The regression procedure that produces
the calibration curve can also be used to calculate so-called
“prediction limits”: for any concentration x, we get an interval
YL,YU such that, if a future response Y is measured on a sample
with concentration x, the probability that Y will be in this interval
has a specified value (usually 90% or 95%). In a calibration setting,
the prediction limits can be inverted to give a confidence
interval: given the reponse y0, the 90% confidence interval is those
values of x whose 90% prediction interval contains y0. The situation
is illustrated graphically in Figure 1a.

Bonate2 investigated the use of the bootstrap for producing
confidence intervals in linear calibration. He found that his
bootstrap intervals failed to achieve the desired coverage, par-
ticularly for small numbers of replicates, so that intervals which
should have contained the true concentration 90% of the time only
did so in fact about 40% of the time. By improving his method,
we obtain bootstrap confidence intervals with much better cover-
age, even for small numbers of replicates. The methodology can
be applied fairly easily, even in complex nonlinear and multivariate
situations, where the standard method becomes extremely difficult
to work with. Examples of such systems include nonlinear
receptors and bioassays as well as immunoassays. We are
especially interested in applying this method to immunoassays,
particularly in multivariate analysis.

The bootstrap examines the variability of an estimate by using
the existing data, together with some assumptions about how it
was generated, to produce new, but plausible, “pseudo data sets”.
Estimates can be obtained for each of the pseudo data sets and
the resulting values examined to derive approximations to the† Graduate School of Management, University of California.
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Y ) f(θ,x) + ε (1)

Y ) a + bx + ε (2)

y ) f(θ̂,x) (3)

X̂0 ) (Y0 - â)/b̂ (4)
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statistical characteristics of the original estimate. More back-
ground information and references are given in Bonate.2 A useful
introduction to the theory and implementation of the bootstrap is
given by Efron and Tibshirani.3

In the case of calibration data, Bonate’s bootstrap resamples
the residuals from the calibration curve to create new calibration
data (x*i ,Y*i ) and then uses the resulting bootstrap calibration curve
and the observed response Y0 from the unknown sample to
calculate bootstrap estimates X̂*. This is repeated a large number
of times (1000) and the distribution of X̂* values used to produce
a confidence interval. This ignores, however, the variability
inherent in the Y0 value, as shown in Figure 1b. We propose
creating bootstrap Y*0 values by further resampling from the
residuals; thus in our bootstrap data sets, all the responses Y for
both standards and unknowns are replaced by new values Y*. This
simple expedient gives a coverage probability much closer to the
required level.

We also suggest adjusting the residuals as described by Efron
and Tibshirani.3 The residual variation around a sample mean
or fitted curve is too small, by a known factor, to accurately reflect
the variation in responses. Multiplying by the appropriate factor,

where n is the number of points and p the number of parameters,
adjusts the residuals to allow for this.

The general approach of using residuals from both standards
and unknowns is shown diagrammatically in Figure 2, the details
of which are explained in the examples below. We also explore
the use of bootstrap-t intervals.3,4 Other considerations concerning

replication and lack-of-fit may also arise, and these too are
discussed and illustrated in the simulations and examples.

First, we follow Bonate in examining the linear model with
constant coefficient of variation. We compare our intervals with
Bonate’s and with the standard method using simulation, extend-
ing Bonate’s framework to include nonnormal errors in the
reponse. We then look at an example of nonlinear calibration,
using both simulation and real data. Finally, we consider, using
a real data set, a difficult nonlinear multivariate problem where
the standard method becomes intractable.

LINEAR CALIBRATION
Following Bonate, we simulate from the model in eq 2, with

errors ε having constant mean and standard deviation proportional
to the expected value of Y, so that the coefficient of variation (cv)
is constant; the calibration line is estimated using weighted least-
squares regression with weights wi ) 1/xi

2. Six calibration
standards were used comprising triplicates of a low and a high
concentration, e.g., 10, 10, 10, 1000, 1000, 1000, and the parameters
a and b were chosen as described by Bonate.

The prediction limits are then

where xjw is the weighted mean and SSxw the weighted sum of
squares of the standard concentrations, t is a percentage point of
the appropriate t-distribution, and s is an estimate of the standard
deviation of the errors. If s is taken as the square root of the
mean square error from the calibration curve estimation, it has n
- 2 degrees of freedom; a better approach is to combine estimates
from this and from the r replicates of the unknown, giving n + r
- 3 degrees of freedom. Then, for a 90% prediction interval, t is
the 95th percentile of the tn+r-3 distribution. The standard
confidence interval for an unknown with mean response yj is
calculated by finding the values of x that make either prediction
limit equal to yj. On rearranging, this gives quadratic equations
for the lower and upper limits that are easily solved.

To illustrate our approach to the bootstrap, we work through
an example shown in Figure 2. Given the responses for the
standards, an appropriate regression (here weighted least-squares)
gives estimates of the parameters and n unweighted residuals Ri

) (Yi - â - b̂xi)/xi. These are adjusted as described above and
placed in a residual pool. Further residuals are obtained from
the responses for the unknown sample by subtracting their mean.
Since our analysis uses weights dependent on x, and x0 is
unavailable for the unknown sample, the estimate X̂0 is used
instead, so that the residuals are

An exception must be made when there is only one replicate of
the unknown: here, only the standards would contribute to the
residual pool, although the unknown would still receive from the
pool as described below. The residual from an unreplicated
unknown would be zero, and the adjustment factor infinite, so its
inclusion would not be possible.

(3) Efron, B.; Tibshirani, R. J. An Introduction to the Bootstrap; Chapman and
Hall: New York, 1993.

(4) Hall, P. The Bootstrap and Edgeworth Expansion; Springer-Verlag: New York,
1992.

Figure 1. Two methods of producing a confidence interval given a
response Y0: (a) using the prediction limits from regression (dashed
lines) and (b) using the bootstrap to simulate variability in Y0 and the
calibration line.

xn/(n - p) (5)

â + b̂x ( tsxx2

r
+ 1

∑wi

+
(x - xw)2

SSxw
(6)

Ri ) (Y0i - Vh0)/X̂0 (7)
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Bootstrap data sets are now formed by sampling with replace-
ment from the residual pool. The bootstrap responses are given
by

for the standards and

for the unknown, where R* represents a random drawing from
the residual pool. Each bootstrap data set is used to calculate a

bootstrap estimate X̂*0; 1000 such values are then used to calculate
the confidence interval by sorting and finding the 5th and 95th
percentage points.

Figure 3 shows the resulting histogram for one of the simulated
data sets when there is only one replicate of the unknown: the
distribution can be bimodal. This occurs when there is an
apparent gap in the residuals, so that the bootstrap responses Y*

fall into two distinct groups. This then translates into bimodality
in the distribution of X*0. For larger r, the problem disappears
and the distribution becomes more symmetrical; it could be
remedied for r ) 1 by smoothing the empirical distribution of
the residuals or sampling from a normal approximation. Bonate

Figure 2. Example of the formation of a residual pool to produce bootstrap estimates X̂*0. Figures are rounded from the computer output, so
some calculations appear inexact.

Y* ) â + b̂x + xR* (8)

Y*0 ) Y0 + X̂0R* (9)
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uses bias correction to counteract asymmetry. Our first simulation
investigates the effect of this and our proposed improvements in
the case r ) 1 when the true concentration x0 ) 30.

The results are given in Table 1. It can be seen that bias
correction plays an insignificant role in achieving the proper
coverage. The most important correction is to allow for variability
in the measured response of the unknown (although this will
decline as replication increases). Adjustment of the residuals is
also a significant factor. The results are not affected by the cv
used, so in future simulations we keep cv ) 0.05.

As an alternative, we also consider the bootstrap-t. Here we
use instead of X̂0 the “pivotal” statistic

which is analogous to the usual t-statistic in normal theory
statistics. Here se(X̂0) is the standard error, which can be
approximated using the delta method5 by

Bootstrap data sets are generated as for the ordinary percentile

bootstrap given above, and each yields a bootstrap-t value t*
calculated by replacing X0 by X̂0 and X0 by X̂*0 in eq 10. Similarly,
se(X̂*0) is found from eq 11, X̂0, s, and b̂ being replaced by their
bootstrap values. The 5th and 95th percentage points (t*0.05,t*0.95)
are found and the confidence interval (XL,XU) calculated as

Theory suggests3,4 that these intervals should achieve greater
coverage accuracy than the ordinary percentile bootstrap. Efron
and Tibshirani3 recommend the accelerated bias-corrected boot-
strap, but it is difficult to see how to implement this with calibration
data. Bonate also considers an alternative nonbootstrap method,
derived from a naive use of the standard error given above. This
seems to have little to recommend it, and Bonate’s simulations
suggest that its behavior is erratic. We do not consider it further.

We now compare the performance of the standard confidence
interval (S), the percentile bootstrap (PB), and the bootstrap-t (BT)
using the linear model as described above. Bonate’s method (B)
is also included for comparison. Since S is designed specifically
for the case of normally distributed errors, it might be expected
to fail when this assumption is incorrect; the bootstrap methods,
however, use the observed errors, and so might be expected to
work even when the errors are nonnormal. To test this hypoth-
esis, we employed three other error structures: a lognormal
distribution, a t-distribution with four degrees of freedom, and a
mixture of normals in which one in 10 observations is an outlier.
Results for 1000 simulations are given in Table 2 for one and three
replicates of the unknown sample, using x0 ) 90. Other concen-
trations for the unknown were tried at various points on the
calibration line: all gave substantially similar results.

Our results for B agree with Bonate’s findings: the coverage
is much too low. Using PB, the coverage improves to about 80%
but is still short of the target 90%. BT, however, appears to achieve
approximately the right coverage, as does S. There is little to
choose between these two in terms of coverage and average
length. The performance of each method changes little for two
of the departures from normality tested; only in the case of
t-distributed errors are the coverage probabilities seriously af-
fected, and even here S outperforms the other methods. In short,
there is no apparent advantage to using the bootstrap in this case
because the standard method works adequately and is easier to
calculate. Improving robustness to distributional assumptions
would require changing the method of estimation,6 not just the
method of assessing precision. Use of a robust estimation method
in conjunction with the bootstrap could be a viable approach to
this problem, but this is beyond the scope of this paper.

Finally in this section, we repeat the experiment with a larger
number of standards, n ) 15 instead of n ) 6. The results in
Table 3 show that now PB improves and is comparable with BT
and S. This is in line with theoretical predictions: the bootstrap-t
converges more quickly to the target coverage, but for larger
samples both are approximately correct.

A NONLINEAR EXAMPLE
If the calibration curve (i.e., the function f(.) of eq 1) is

intrinsically nonlinear,7 exact prediction limits cannot usually be

(5) Stuart, A.; Ord, J. K. Kendall’s Advanced Theory of Statistics, 5th ed.; Oxford
University Press: Oxford, 1987; pp 323-329.

(6) Tiede, J. J.; Pagano, M. Biometrics 1979, 35, 567-74.
(7) Seber, G. A. F.; Wild, C. J. Nonlinear Regression; Wiley: New York, 1989;

pp 4-7.

Figure 3. Histogram of 1000 bootstrap estimates with only one
replicate of the unknown, showing that the distribution is sometimes
bimodal.

Table 1. Effect of Bias Correction, Varying Y0 and
Residual Adjustment on the Coverage Probability
(Nominally 90%) of Bootstrap Confidence Intervals (n
) 10 000 Simulations)a

bootstrap method

cv B BY BR BYR

0.05 bc 0.382 0.718 0.457 0.792
nbc 0.379 0.734 0.456 0.807

0.10 bc 0.383 0.728 0.455 0.799
nbc 0.382 0.745 0.451 0.812

0.20 bc 0.380 0.721 0.451 0.791
nbc 0.378 0.736 0.448 0.806

a Figures give the proportion of intervals containing the true
concentration. bc, with bias correction; nbc, without. Methods: B,
Bonate’s method; BY, B + variation in Y0; BR, B + residual adjustment;
BYR, Bonate’s method + variation with Y0 + residual adjustment.

t ) (X̂0 - X0)/se(X̂0) (10)

se(X̂0) =
s
b̂xX̂0

2

r
+ 1

∑wi

+
(X̂0 - xjw)2

SSxw
(11)

XL ) X̂0 - t*0.95se(X̂0), XU ) X̂0 - t*0.05se(X̂0) (12)

766 Analytical Chemistry, Vol. 68, No. 5, March 1, 1996



calculated, and we have to rely on a delta method approximation.
In such situations, the performance of the standard method of
confidence interval construction becomes uncertain. We take as
an example the determination of the herbicide atrazine in water
samples by enzyme-linked immunoassay (ELISA).

ELISA is one of several forms of immunoassay, itself a version
of a more general ligand-receptor interaction analysis. A dose-
response curve is generated by the specific interaction of an
antibody and its antigen, referred to as the analyte (in our case,
atrazine). The antibody is usually immobilized on a solid surface,
e.g., a well of a microtiter plate. Since the antibody-antigen
binding cannot be observed directly, an enzyme-labeled analogue
(tracer) is introduced. This tracer is incubated in the antibody-
coated microtiter plate wells, together with the sample containing
analyte molecules. According to the law of mass action, both
analyte and tracer establish equilibrium binding to the limited
number of solid phase antibodies, their ratio being governed by
their relative affinities to the antibody. This could also be viewed
as an equilibrium distribution of the two species between two
phases. After the unbound molecules are washed out, an enzyme
substrate is added, which is converted into a colored product. The
color intensity is then measured photometrically as an optical
density. The higher the initial concentration of analyte in the
sample, the fewer tracer molecules are bound and the lower the
optical density reading. If no analyte is present in the sample,
the antibody binding sites are all occupied by a maximum number
of tracer molecules, thereby generating the highest possible
signal. There is usually a small amount of binding of the tracer,
even in the presence of very high analyte concentrations: this is
referred to as nonspecific binding. The typical dose-response
curve of optical density plotted against log concentration is thus
sigmoidal in shape.

A common method of fitting a calibration curve to such data
is the four-parameter logistic model.8 A detailed account of the
fitting, estimation of unknown concentrations and calculation of
the standard confidence interval is given by O’Connell et al.9 Our
analysis differs slightly in that we assume a constant coefficient
of variation and use a log transformation of the reponses instead
of estimating a variance function.10 Thus, our model is

where Y is the assay response, x the analyte concentration, A, B,
C, and D the model parameters, and ε an error assumed to have
a normal distribution with zero mean and variance σ2.

A specimen calibration curve with 90% prediction limits is
shown in Figure 4. The mean response Yh0 for an unknown sample
is used to give an estimated concentration X̂0 and a confidence
interval (XL,XU), as in the linear case. Bootstrapping can also be
carried out as for the linear model; one refinement not previously
considered is that we now have several unknown samples for each
calibration curve, so each makes a contribution to the residual
pool. Starting with 96 observations, comprising 24 calibration
standards and 24 unknowns in triplicates, our residual pool will
contain 96 residuals, and these are resampled to construct 96
bootstrap observations; each bootstrap data set is used to calculate

(8) Rodbard, D. Mathematics and statistics of ligand assays: An illustrated guide.
In Ligand Assay: Analysis of International Developments on Isotopin and
Nonisotopic Immunoassay; Langan, J., Clapp, J. J., Eds.; Masson: New York,
1981.

(9) O’Connell, M. A.; Belanger, B. A.; Haaland, P. D. Chemom. Intell. Lab. Syst.
1992, 20, 97-114.

(10) Rocke, D. M.; Jones, G. Submitted to Technometrics.

Table 2. Comparison of Confidence Interval Methods with Nine Standards When x0 ) 90a

normal lognormal t4 mixture

r method p m SD p m SD p m SD p m SD

1 B 0.460 6.13 2.22 0.428 5.86 2.16 0.255 5.54 3.13 0.456 6.39 3.52
PB 0.829 16.03 5.82 0.807 15.37 5.67 0.607 14.54 8.23 0.809 16.73 9.22
BT 0.885 20.48 7.72 0.877 19.60 7.38 0.701 18.88 11.93 0.877 21.72 13.07
S 0.905 21.30 7.86 0.893 20.37 7.64 0.717 19.25 11.51 0.891 22.30 12.84

3 B 0.582 6.00 2.09 0.568 5.88 2.29 0.413 5.59 3.27 0.574 6.03 3.38
PB 0.817 10.20 2.96 0.802 10.05 3.25 0.721 12.20 5.62 0.804 10.35 4.84
BT 0.911 13.04 3.72 0.901 12.85 4.05 0.864 16.47 7.54 0.889 13.11 5.84
S 0.911 13.12 3.75 0.905 12.95 4.10 0.871 17.04 8.40 0.894 13.37 6.23

a r, number of replicates of unknown; p, achieved coverage; m mean length of interval; SD, standard deviation of interval length. Methods: B,
Bonate’s method; PB, percentile bootstrap; BT, bootstrap-t; S, standard method.

Table 3. Comparison of Confidence Interval Methods with 15 Standards When x0 ) 90a

normal lognormal t4 mixture

r method p m SD p m SD p m SD p m SD

1 B 0.330 3.91 0.81 0.327 3.91 0.80 0.211 3.76 1.42 0.342 4.06 1.43
PB 0.871 15.56 3.37 0.867 15.55 3.35 0.664 15.79 6.81 0.876 17.11 7.14
BT 0.875 16.21 3.52 0.875 16.13 3.41 0.666 16.28 7.17 0.869 17.64 7.54
S 0.883 16.42 3.37 0.884 16.43 3.35 0.671 15.76 6.08 0.887 17.03 6.05

3 B 0.493 3.92 0.79 0.491 3.92 0.78 0.289 3.83 1.41 0.518 4.06 1.37
PB 0.899 9.34 1.76 0.894 9.34 1.75 0.716 11.12 3.99 0.898 9.84 3.11
BT 0.917 9.95 1.88 0.916 9.95 1.87 0.718 11.42 3.90 0.911 10.41 3.25
S 0.919 10.00 1.87 0.918 10.00 1.86 0.727 11.52 3.98 0.913 10.48 3.27

a r, number of replicates of unknown; p, achieved coverage; m, mean length of interval; SD, standard deviation of interval length. Methods: B,
Bonate’s method; PB, percentile bootstrap; BT, bootstrap-t; S, standard method.

log Y ) log( A - D
1 + (x/C)B + D) + ε (13)
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the bootstrap estimates X̂*0 for all the unknown samples simulta-
neously.

First we consider a simulation, based on a real data set to be
examined later, to compare S, PB, and BT. The parameter values
A ) 0.5, B ) 1.1, C ) 0.86, D ) 0.02, and σ ) 0.06 were based on
the real data, as were the standard concentrations. The bootstrap-t
turns out to be problematic for very small and very large
concentrations, because of difficulties in approximating se(X̂0), so
these were avoided in the simulation. For each unknown
concentration, 24 triplicates were simulated per plate for 1000
plates, thus giving 1000 calibration curves but 24 000 estimates.
The results are given in Table 4. It can be seen that all three
methods achieve approximately the target coverage; S and BT
have very similar characteristics, but PB appears to have slightly
less coverage with slightly shorter, less variable intervals.

We now turn to a real data set and find a number of new
problems to be surmounted. The data were originally produced
to examine experimental variation in ELISA curves: a detailed
description is given by Jones et al.11 Four sets of standards,
comprising triplicates of 0, 0.1, 0.3, 1, 3, 10, 100, and 10000 ppb,
were placed on each of 32 microplates, with pairs of plates being

treated under different experimental conditions. Here we take
the first set of standards for our calibration curve estimate and
regard the others as “unknowns”. There are 32 plates, thus 32
calibration curves, and each gives three determinations each of
0, 0.1, 0.3, 1, 3, 10, 100, and 10 000 ppb. So we have 96 confidence
intervals at each concentration level, giving a total of 768 intervals
that may or may not contain the true concentration they are
estimating. A valid procedure should produce confidence intervals
that contain the true concentration 90% of the time, so the expected
number of “successes” at each concentration should be 96 × 0.9
) 86.4.

The results are shown in Table 5. Some adjustments were
made to the bootstrap methodology, which we now describe. First,
since all samples, both standards and unknowns, are replicated,
this allows the possibility of obtaining all the residuals using the
sample means, as opposed to using the fitted model to get
residuals for the standards. This is a more symmetrical arrange-
ment and means that the generation of the bootstrap data is model-
free: we only need to assume independent errors and constant
coefficient of variation. Thus we have two alternatives for the
percentile bootstrap: using residuals from the fitted model
(PBFspercentile bootstrap with fitted residuals) or using only
residuals from within replicates (PBRspercentile bootstrap with
replicate residuals). It can be seen from the table that the
performance of both is poor compared to that of the standard
method (S). To give a concrete example, one of the 1 pbb samples
gives a point estimate of 1.36 ppb; the standard confidence interval
is (0.94,1.86) which contains the true concentration, whereas the
PBF and PBR intervals of (1.10,1.63) and (1.10,1.65), respectively,
do not.

One explanation for this is lack-of-fit of the assumed model.
It is unlikely that the true response-concentration relationship
follows exactly the functional form assumed in the model (even
for many supposedly “linear” relationships). This is obviously not
a problem in simulations, but for real data it is an important
concern. When the standards are replicated, it is possible to test
for lack-of-fit by partitioning the variation around the fitted curve
and comparing the lack-of-fit mean square (MSLF) to the pure
error mean square (MSPE),12 but even when this test is not

(11) Jones, G.; Wortberg, M.; Kreissig, S. B.; Gee, S. J.; Hammock, B. D.; Rocke,
D. M. Anal. Chim. Acta 1995, 313, 197-207.

(12) Seber, G. A. F.; Wild, C. J. Nonlinear Regression; Wiley: New York, 1989;
pp 30-32.

Figure 4. Typical dose-response curve for ELISA, with prediction
limits (dashed lines) and confidence interval.

Table 4. Simulation Results (1000 Simulations) for
Single-Analyte ELISA with A ) 0.5, B ) 1.1, C ) 0.86,
D ) 0.02, and σ ) 0.06 for “Unknown” Concentration xa

x method p m SD

0.3 S 0.900 0.166 0.030
PB 0.894 0.159 0.019
BT 0.896 0.165 0.030

1.0 S 0.899 0.268 0.045
PB 0.893 0.257 0.027
BT 0.898 0.272 0.047
S 0.901 0.591 0.103
PB 0.896 0.566 0.061
BT 0.897 0.596 0.106

10.0 S 0.899 2.536 0.500
PB 0.890 2.421 0.338
BT 0.898 2.541 0.503

a p, achieved coverage; m, mean length of interval; SD, standard
deviation of interval length. Methods: PB, percentile bootstrap; BT,
bootstrap-t; S, standard method.

Table 5. Number of 90% Confidence Intervals
Containing the True Concentration from 96 Samples
(Expected Number Should Be 86.4)a

confidence interval method

x S PBF PBR PBF* PBR* BT

0 92 87 85 90 87 *
0.1 90 82 82 90 85 *
0.3 85 79 74 81 81 75
1 85 69 65 83 88 75
3 75 66 63 72 86 66
10 71 58 57 70 74 60
100 69 46 44 53 61 *
10 000 91 90 90 91 92 *

total 85.7% 75.1% 72.9% 82.0% 85.2% 71.9%

a Methods: S, standard method; PBF, percentile bootstrap with
residuals from fitted model; PBR, percentile bootstrap with residuals
from within replicates; BT, bootstrap-t. An asterisk denotes adjustment
to achieve compatibility with the standard method.
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statistically significant, lack-of-fit may still exist and distort the
results. The standard method as given by O’Connell et al. uses
an estimate of σ that includes lack-of-fit since it comes solely from
the curve-fitting process; PBR implicitly uses pure replication error
excluding lack-of-fit; PBF has an intermediate position. To make
a fairer comparison between the methods, we adjusted the
residuals to make them compatible with method S by multiplying
by the ratio of the estimated standard deviations (σ̂S/σ̂PB): these
adjusted methods are denoted PBF* and PBR*. This can be seen
to account for most of the disparity among the methods. The
bootstrap-t (BT) could not be used for high and low concentra-
tions; this is not necessarily a serious disadvantage because these
concentrations were known to be beyond the limits of accurate
quantitation. However, BT also performed poorly throughout,
possibly because the delta method approximation to the standard
error is poor.

All methods showed nonuniformity of coverage across con-
centrations, with PBR* perhaps the most uniform. This nonuni-
formity might be indicative of lack-of-fit, or it might be due to
spatial effects on the plates.13 One of the 100 ppb samples was
consistently missed, and it was located in one of the corners of
the plate, where measurements tend to be less reliable due to
possible edge effects.

NONLINEAR MULTIVARIATE CALIBRATION
We use here as an example the analysis of mixtures of the

herbicides atrazine and simazine using multianalyte ELISA (MEL-
ISA). MELISA uses a panel of antibodies to detect and quantitate
mixtures of analytes which cross-react in single-antibody assays
by generalizing the four-parameter logistic model.14 In the case
of binary mixtures, we use two suitably chosen antibodies, so that
the responses (Y1,Y2) from a mixture with concentrations (x1,x2)
are modeled by

where Ai, Bij, Cij, and Di are the parameters of the calibration curve
for analyte j with antibody i, and B*i is the geometric mean of Bi1

and Bi2. Two microtiter plates are needed for the assay, each
treated with a different antibody. Two single-analyte calibration
curves are run on each plate, together with unknown samples.
We assume that parameters A and D are common to both curves
on the same plate. Estimates of the unknowns x1 and x2 for each
sample are calculated by solving the system of eq 14 using the
measured responses (Y1,Y2). Because of this complexity, the
standard method of producing confidence intervals for the
estimates becomes intractable; implementation of the percentile
bootstrap as described above is, however, straightforward: we
generate new bootstrap data for each plate separately and then
calculate the bootstrap estimates (x1,x2).

It is known that mixtures of atrazine and simazine are hard to
quantitate accurately by MELISA, since they have similar patterns
of cross-reactivity: analysis of 110 samples of 1 ppb atrazine with

1 ppb simazine by Wortberg et al.15 demonstrated strong correla-
tion between the estimates, so that atrazine concentration might
be considerably overestimated with simazine underestimated, or
vice versa.

We now show that the bootstrap can provide the same
information for single unknown samples without the need for large
numbers of replicates. Figure 5ab shows the results of 1000
bootstrap estimates for two of the samples assayed in Wortberg
et al.; the correlation and uncertainty in the estimates can be
clearly seen. In Figure 5a, the point estimate was (0.81,1.16),
which is quite close to the true concentration (1.0,1.0). In Figure
5b, the point estimate is (1.71,0.14), so atrazine is overestimated
at the expense of simazine, and many of the bootstrap samples
indicate only atrazine. It seems that the total concentration 2 ppb
is quite well-estimated, but the assay does not give precise
estimation of the relative amounts. Bootstrapping thus gives an
easily interpreted account of the information provided by the assay
for each unknown sample.

DISCUSSION
Our examples illustrate the difficulties involved in applying

statistical methods to real calibration data. In practice, errors may
not be normally distributed, or even independent. The postulated
model may not be quite correct, or there may be temporal or
spatial effects that distort the relationship in going from standards
to unknowns. The result is that theoretical “90% confidence
intervals” may not contain the true concentrations 90% of the time.
The analyst wants narrow intervals to be assured of the precision
and accuracy of the assay, but if these intervals do not have
adequate coverage probability, this assurance is false.

In particular, we have tried to adjust our procedure for lack-
of-fit of the model. Our adjustment, however, was done to make(13) Shekarchi, I. C.; Sever, J. L.; Lee, Y. J.; Castellano, G.; Madden, D. L. J.

Clin. Microbiol. 1984, 19, 89-96.
(14) Jones, G.; Wortberg, M.; Kreissig, S. B.; Bunch, D. S.; Gee, S. J.; Hammock,

B. D.; Rocke, D. M. J. Immunol. Meth. 1994, 177, 1-7.
(15) Wortberg, M.; Kreissig, S. B.; Jones, G.; Rocke, D. M.; Hammock, B. D.

Anal. Chim. Acta 1995, 304, 339-352.

log Yi ) log( Ai - Di

1 + [(x1/Ci1)
Bi1/B*i + (x2/Ci2)

Bi2/B*i]B*i
+ Di) + εi

i ) 1, 2 (14)

Figure 5. Bootstrap estimates from MELISA of 1 ppb atrazine with
1 ppb simazine. Dashed lines show the position of the true concentra-
tion. (a) Point estimate (0.81,1.16). (b) Point estimate (1.71,0.14).
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the bootstrap comparable with the standard method and was in a
sense arbitrary, since it depends on the standards used to generate
the calibration curve: having four concentrations each replicated
five times would give a mean square error with a smaller lack-
of-fit component than for 10 concentrations each replicated twice.
With given standards and a given decomposition of the mean
square error, different combinations of MSLF and MSPE could
be used, but there is no obvious defensible choice. Lack-of-fit by
its very nature depends on the sample concentration, so perhaps
averaging it out across the curve is not appropriate: the resulting
confidence intervals might have the correct coverage on average,
but the actual coverage would vary for different sample concentra-
tions. Nonparametric estimation of the calibration curve16 might
be the answer in some cases. Our bootstrap methodology could
still be applied here without adaptation.

Some theoretical approaches17 have tried to allow for multiple
uses of the same curve. The issue here is that all calibrated values
taken from a single estimated calibration curve are correlated: if
that curve happens to be “bad”, all the readings taken from it will
be affected. These theoretical approaches tend to be complicated
and conservative, producing statements such as: “at least 90% of
the curves will produce confidence intervals which in the long
run will contain the true concentration at least 90% of the time”.
It can be noted that the bootstrap methodology advocated here
will reproduce, in the bootstrap estimates, the correlation between
all the sample estimates taken from a single curve; this correlation
can then be examined by anyone interested in doing so.

Furthermore, the analysis applies to the actual number of samples
being assayed at the actual estimated concentrations obtained,
and not to some theoretical infinite series of unknown samples at
unknown places on the curve.

CONCLUSION
In simple calibration situations where prediction limits for the

reponse are easily derived, the standard method of inverting these
to get confidence intervals works well even under slight departures
from normality. Bootstrapping can also work adequately but is
more computationally intensive. In more complex situations
where the standard method is difficult or intractable, the bootstrap
is a useful tool. In applying the bootstrap to calibration data, it is
important to allow the reponses to vary for both standards and
unknowns and to appropriately adjust the residuals.
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