Ukiah, December 2 2010

Pyrolysis of Biomass

Gareth J Mayhead University of California Berkeley In partnership with: USDA Forest Service Region 5

http://ucanr.org/WoodyBiomass

University of California Agriculture and Natural Resources

Woody Biomass Utilization

Making a Difference for California

Pyrolysis

- Pyrolysis is thermal decomposition occurring in the absence of oxygen
 - Energy required to raise temperature to start process (527F) may be external or internal (part of biomass load)
- It is the first step of combustion and gasification
- Family of related processes including:
 - Slow pyrolysis
 - Torrification
 - Torrefaction
 - Airless drying
 - Destructive distillation
 - Fast pyrolysis

Slow pyrolysis – batch carbonization

- Proven technology (1000+ years)
- Low temperature, long residence time (550-750°F, 30mins-days)
- Flexible feedstock specification
- Burns part of the load for the heat input
- Charcoal is main product
- Equipment available for large and small scale production
- AQ issues
- Works in the woods!

Slow pyrolysis – continuous auger system

http://ucanr.org/WoodyBiomass

External heat source (electricity)

Other slow pyrolysis units

Industrial unit

- 20,000 ton/yr feedstock
- 5000 ton/yr charcoal
- 400kW electric generation

http://ucanr.org/WoodyBiomass

Small retort

- ~\$30,000
- 250 tons/yr feedstock
- 62 tons/yr charcoal

www.fourseasonsfuel.co.uk

Fast pyrolysis

- An emerging technology
- Moderate temperature, short residence time (930°F/~1s)
- Products are bio-oil, char (and gas)
- Tight feedstock specification (clean, ^{1/}₁₆-^{1/}₈", <10% moisture)
- Energy balance can be a problem (energy required for drying and process heat)

Fast pyrolysis – ROI mobile equipment demo, Oregon, Aug '09

http://ucanr.org/WoodyBiomass

Torrefaction or Torrification

- Mild pyrolysis
- 400-600°F
- Product is char ("bio-coal")
 - ~Loss of mass (cheaper transportation)
 - Higher energy density (10,500 BTU/lb vs 8,500 BTU/lb)
 - Hydrophobic (store outside)
 - Easier to grind than wood
 - Potential fuel for coal power plants
- Scale-up and financing is an issue

Pyrolysis outputs

- 1. Liquid (bio-oil C, H, O and other constituents)
- 2. Char
- 3. Gas

Vary depending upon process conditions (residence time and temperature)...

Mode	Conditions	Liquid	Char	Gas
Fast pyrolysis	moderate temperature, short residence time particularly vapour	75%	12%	13%
Carbonisation (slow pyrolysis)	low temperature, very long residence time	30%	35%	35%
Gasification	high temperature, long residence times	5%	10%	85%

Source: PyNe

http://ucanr.org/WoodyBiomass

Bio-oil

- Potential to substitute for conventional fuels in boilers, engines, turbines (*note*: may damage equipment, invalidate warranty)
- Heating value 40% of fuel oil/diesel (~17 MJ/kg at 25% wt. water)
- Does not mix with hydrocarbon fuels
- Acidic (pH 2.5)
- Not as stable as fossil fuels (storage issues)
- Needs further refining steps for most applications

http://ucanr.org/WoodyBiomass

Char, Biochar, Charcoal, Torrefied wood

- Charcoal (lump or briquette) barbeques, restaurants
- Filtration (water and air) using activated carbon
- Soil improvement
- Growth media (substitute for vermiculite)
- Fuel for coal (or other power plants)
- Prices vary with quality and end-use
- Artists charcoal, gasification, pharmaceuticals, animal feed, pyrotechnics, explosives, pigments etc

Activated Carbon

- Open up carbon structure to increase surface area available to hold (adsorb) molecules and other substances
- Heat charcoal to 1470°F (800°C) in superheated steam to remove tars from structure
- Charcoal needs to have low ash and low volatile content (no bark)

Activated carbon plant

http://ucanr.org/WoodyBiomass

Current status – fast pyrolysis

- Many demo projects (inc OR and CA)
- Few commercial installations (~6 in USA producing liquid smoke)
- 10+ vendor US/Canada companies (eg, Dynamotive, Ensyn, ABRI, ROI, RFT)
- Potential mobile in-woods units unproven
- Pricing unclear
 - \$250,000+ for 1 ton/day unit
- Tampere, Finland integrated pilot facility (Metso/UPM/VTT) linked to BFB boiler

Key points

- Slow pyrolysis
 - Proven technology
 - Markets exist for product (charcoal)
- Mild pyrolysis (torrefaction)
 - Almost proven technology
 - Proven markets
 - Scale-up issues (finance, feedstock and market for product)
- Fast pyrolysis
 - Emerging technology
 - Limited markets
 - May use more energy in process than it produces
 - Cost basis unclear need high value products or zero cost feedstock
 - Use of bio-oil as a chemical feedstock or for liquid smoke makes sense
 - Larger scale integrated systems (eg with power plant) may work
- Carry out due diligence

http://ucanr.org/WoodyBiomass

Questions?

http://ucanr.org/WoodyBiomass

