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Phytophthora infestans (Mont.) De Bary 
is an oomycete that infects potato crops 
during cool, wet weather, causing potato 
late blight. Late blight on potato crops is a 
concern to potato growers worldwide, and 
considered to be the most economically 
important disease to potato crops in North 
America (7). U.S. growers can experience 
annual losses of revenue of $210.7 million, 
$77.1 million being the cost of late blight 
fungicides alone (8). The pathogen spreads 
rapidly, is difficult to manage, and can 
cause massive losses in crop yields, both in 
the field and in storage. 

Forecasting models that predict the like-
lihood of late blight outbreaks may provide 
important information for potato producers 
in southern Idaho, enabling farmers to 
implement a timely disease management 
plan. Practical benefits include an ad-
vanced warning system for southern Idaho 

potato farmers. In late-blight-favorable 
years, fungicide use may increase due to 
the added control gained by early fore-
casts. However, when weather is not favor-
able for late blight, growers could use the 
forecasts to reduce unnecessary fungicide 
applications, thereby reducing the mone-
tary and environmental costs associated 
with traditional calendar-based spray pro-
grams. 

Several models have been developed to 
predict the initiation of a late blight epi-
demic. van Everdingen (25) first proposed 
using a set of “Dutch rules” based upon 
presence of dew at night, night-time tem-
perature, mean cloudiness, and rainfall. 
Late blight was predicted within a fort-
night (14 days) of favorable conditions. 
This model has been modified since then 
in various ways. The Beaumont method 
implemented a temperature-humidity rule 
in lieu of the Dutch rules, where late blight 
was predicted after 2 days when the mini-
mum temperature was not less than 10ºC 
and relative humidity (RH) did not drop 
below 75% (1). Cook (3) developed a sim-
ple graph based on daily average tempera-
ture and rainfall beginning at the start of 
the growing season. Growers were advised 
to spray after the accumulation of rainfall 

had passed the “critical rainfall line,” a 
threshold based on the accumulated daily 
average rainfall and temperatures during 
the growing season. Efficacy of this model 
was impaired when above-average or be-
low-average amounts of rainfall occurred 
early in the growing season (19). Hyre (11) 
modified Cook’s system, classifying days 
as being “favorable” or “unfavorable.” 
Days were considered favorable when the 
mean temperature of the previous 5 days 
was less than 25.6ºC and the cumulative 
precipitation for the 10 previous days was 
3 cm. Late blight was predicted 2 weeks 
after the accumulation of 10 favorable 
days. Wallin (26) developed a model based 
upon the Beaumont rules, where severity 
values were assigned based on temperature 
ranges and high RH values. Late blight 
occurrence first was predicted 7 to 14 days 
after 18 to 20 severity values had accumu-
lated. BLITECAST was developed as a 
computerized synthesis of both the Hyre 
and Wallin models and has been used suc-
cessfully in many potato-producing re-
gions of North America (17). Regions able 
to successfully use BLITECAST are more 
humid, experience more rainfall, and have 
frequent yearly late blight occurrence 
compared with southern Idaho. Conse-
quently, using a disease forecast developed 
for humid regions with regular yearly dis-
ease occurrence, such as BLITECAST and 
other models based upon high humidity 
(1,2,4–6,9,15,17,19,21–23,25), has not 
been effective in southern Idaho (unpub-
lished data). In southern Idaho, disease 
inoculum may not always be present and 
the low humidity and rainfall are unfavor-
able for disease development. 

Given the sporadic late blight occur-
rence in southern Idaho, development of a 
qualitative model that predicts yearly pres-
ence or absence of late blight may be more 
useful. Qualitative prediction models have 
been developed in the Columbia Basin of 
Washington in the United States (13,14) 
and in the Netherlands (27) using dis-
criminant and logistic regression to iden-
tify relationships between regional weather 
data variables and disease occurrence on a 
binary or ordinal response scale. 

The Columbia Basin model was con-
structed for the south-central area of Wash-
ington using linear discriminant and logis-
tic regression analyses that described the 
relationship between weather data col-
lected near Prosser, WA, with prior late 
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blight outbreaks spanning a 25-year period 
(14). The linear discriminant model used 
the number of rainy days in April and May 
(Ram), the occurrence of late blight the 
preceding year (Yp), and the number of 
rainy days in July and August (Rja) as well 
as the total precipitation in May when the 
daily minimum temperature was ≥5ºC 
(Pm) in Washington. Additional models 
were constructed subsequently to include 
three specific geographic regions of the 
Columbia Basin (Hermiston, OR; Othello, 
WA; and Hanford, WA) using logistic re-
gression analyses (13). 

The Netherlands model evaluated mete-
orological data that correspond to catego-
ries of disease development (27). Meteoro-
logical variables were divided into four 
categories: A, variables affecting the for-
mation of inoculum in the preceding year; 
B, variables affecting the over-wintering of 
inoculum and development of disease on 
refuse piles; and C, variables limiting or D, 
enhancing disease development during the 
growing season (Table 1). Linear discrimi-
nant analysis of data was used to identify 
the variables that were useful in classifying 
years as late-blight or non-late-blight 
years. The variables identified as signifi-
cant in classifying 40 of 47 blight years 
included: blight status the previous year, 
number of days with precipitation (DPg), 
the number of hours with temperatures 
between 10 and 27ºC and RH above 90% 
during the growing season (HFg), amount 
of global radiation (GRg), and hours with 
temperatures above 27ºC (27). 

A model that can be used specifically in 
the semi-arid climate of southern Idaho has 
not been developed. Because weather dur-
ing the potato-growing season of southern 
Idaho and yearly disease occurrence is 
different from that of the Columbia Basin 
or the Netherlands, weather variables that 
were significant in the Columbia Basin 
(13,14) and Netherlands (27) models may 
not be useful for annual forecasting in 

southern Idaho. The Columbia Basin 
model (13,14) and the Netherlands model 
(27) used qualitative analysis of late blight 
occurrence and weather in specific regions 
in construction of their models. This ap-
proach also may be useful in predicting 
late blight in regions of southern Idaho that 
experience a semi-arid climate and spo-
radic late blight occurrence. 

The objectives of this research were to 
(i) determine if regional weather variables 
could be related to the occurrence of late 
blight in southern Idaho, (ii) determine if 
disease severity (scale of 0 to 4) could be 
predicted using variables found to be cor-
related with the annual occurrence of late 
blight, and (iii) validate the efficacy of this 
model in predicting disease incidence in 
regions of the Columbia Basin. 

MATERIALS AND METHODS 
Weather data were collected from 

Agrimet Bureau of Reclamation Pacific 
Northwest Region weather archives (24). 
Data were collected from the archives of 
five Agrimet weather station locations 
across southern Idaho: Aberdeen, Parma, 
Rupert, Rexburg, and Twin Falls. These 
five locations are located in the major 
commercial potato-producing regions of 
southern Idaho (Fig. 1). Late blight sever-
ity for each location was derived from 
disease scouting notes and interviews with 
University of Idaho Extension specialists 
and private consultants who have responsi-
bilities for late blight identification and 
disease management recommendations. An 
estimate of the number of fields affected 
by late blight and the general severity of 
late blight in those fields was used to as-
sign a disease severity number of 0 to 4 
using the scale of Zwankhuizen and 
Zadoks (27), where 0 = no late blight ob-
served or reported; 1 = late blight reported 
in a very limited number of fields in only 
part of the region with, on average, very 
low disease levels per field; 2 = late blight 

reported in most of the region in a limited 
number of fields with, on average, low or 
intermediate disease levels per field; 3 = 
late blight reported in many fields in all of 
the region with, on average, intermediate 
disease levels per field; and 4 = late blight 
reported in most fields in all of the region 
with, on average, high disease levels per 
field (27). 

Weather data from 1995 to 2003 were 
used to construct 12 weather variables 
(Table 1). Weather variables were divided 
into four categories: A, factors affecting 
the formation of inoculum during the pre-
vious harvest; B, factors affecting over-
wintering of inoculum; C, factors favoring 
disease development during the growing 
season; and D, factors limiting disease 
development during the growing season 
(27). Information about the weather sen-
sors and methods of use by Agrimet Bu-
reau of Reclamation Pacific Northwest 
Region can be found online (24). 

The variables constructed using catego-
ries C and D (current growing season) 
were for the period from April to June, in 
order to create a model that would give 
predictions of disease occurrence in a 
timely manner. Late blight has never been 
found in southern Idaho before 5 July (P. 
Nolte, personal communication). However, 
in the event that late blight may occur prior 
to the beginning of July, an additional set 
of variables were created using only data 
collected from April to May. All 12 vari-
ables for every location–year combination 
were organized with the late blight severity 
ratings in Table 2 and analyzed using bi-
nary and ordinal logistic regression analy-
sis using SAS PROC LOGISTIC, (SAS 
8.2; SAS Institute, Cary, NC). 

Binary logistic regression was used to 
create a dichotomous model that would 
predict either the presence (=1) or absence 
(=0) of late blight. Additionally, ordinal 
logistic regression was used to develop a 
model to predict the severity of late blight 

Table 1. Weather variables quantified from 1995 to 2003 for five locations in southern Idaho for construction of logistic regression models to predict the
occurrence and severity of late blight epidemicsa 

Category, variable (unit) Description 

A  
DPh (days) Number of days with precipitation (>0.25 mm) during September and October 
APh (mm) Amount of precipitation during September and October 
DPY (no unit) Disease presence the previous year, (0 or 1) 

B  
APw (mm) Amount of precipitation in winter (November to April) 
HL (no unit) Hellmann value, sum of the average daily temperatures <0ºC from November to April 
FDH (hours) Hours with temperature ≤–2ºC at 5 cm below soil level, November to April 
TS (days) Temperature sum of average daily temperature >0ºC at 5 cm below soil level, November to April 

C  
DPm, DPj (days) Number of days with precipitation, April to May or April to June 
APm, APj (mm) Amount of precipitation, April to May or April to June 
FH80m, FH80j (hours) Number of favorable hours (10ºC ≤ temperature ≤ 27ºC, relative humidity ≥80%), April to May or April to June 

D  
GRm, GRj (J cm-2) Total global radiation, April to May or April to June, over total period 
UHm, UHj (hours) Number of hours with unfavorable conditions (temperature ≥27ºC), April to May or April to June 

a Variables adapted from Johnson et al. (13,14), and Zwankhuizen and Zadoks (27). Meteorological variables were divided into four categories: A, variables 
affecting the formation of inoculum in the preceding year; B, variables affecting the over-wintering of inoculum and development of disease on refuse 
piles; and C, variables limiting or D, enhancing disease development during the growing season. 
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epidemics on a 0-to-4 scale, where 0 repre-
sented no disease and 4 represented severe 
disease. Logistic regression was chosen 
over discriminant analysis due to the fact 
that logistic regression does not assume 
that multivariate observations are distrib-
uted normally (12). The correlation matrix 
of the explanatory variables was examined 
and a principal component analysis was 
performed to rule out collinearity between 
the variables. Backward selection was used 
in the logistic regression analyses to select 
a subset of variables for both the binary 
and ordinal models. The significance level 
for dropping variables in the backward 
selection procedure was 0.05. 

The binary logistic regression model 
had one intercept in the model equation. 
The ordinal model, which used a disease 
measure with five levels of disease, had 
four intercepts. Predictions from either the 
binary or ordinal model are performed by 
first calculating estimated logit scores (lf); 
then, the logit scores are converted into 
estimated probabilities, using equation 1 
(below). For either model, predictions 
were calculated for a location–year combi-
nation of weather data (45 observations): 

Probability(x) = exp(lf)/[1 + exp (lf)]        (eq. 1) 

lf = β′x, where β = the estimated coeffi-
cients and x = the set of covariate values. 

For the binary model, equation 1 gives 
the probability of disease occurring given a 
set of covariate values. For the ordinal 
model, cumulative logit values were calcu-
lated for each level of disease severity, 
yielding four logit scores (lf1 to lf4). Data 
from significant variables were input into 
the four cumulative logit equations, result-
ing in four lf values for every observation 
representing disease levels 1 to 4. The four 
model logit function equations represented 
the following: lf1 = the logit for the sum of 
probabilities for disease levels 1 to 4; lf2 = 
the logit for the sum of the probabilities for 
disease levels 2 to 4; lf3 = the logit for the 
sum of the probabilities for disease levels 3 
and 4; and lf4 = the logit for the probability 
of disease level 4. The calculation of prob-
ability for disease level 0 in the ordinal 
model was simply one minus the probabil-
ity of disease levels 1 to 4. 

Each of the four cumulative logit (lf1–4) 
values for each of the 45 observations then 
was converted into a cumulative probabil-
ity value (equation 1), with the results 
denoted by P(1), P(2), P(3), and P(4). The 
individual probability values for the pre-
dicted disease levels then were calculated 
with the following formulas: 

P′(0) = 1 – [P(1) + P(2) + P(3) + P(4)] (eq. 2)
P′(1) = P(1) – [P(2) + P(3) + P(4)] (eq. 3)
P′(2) = P(2) – [P(3) + P(4)] (eq. 4)
P′(3) = P(3) – [P(4)] (eq. 5)
P′(4) = P(4) (eq. 6)

The appropriateness for using the binary 
model was assessed by checking the influ-
ence of each data point on the model coef-

ficients, as well as by performing a Hos-
mer-Lemeshow goodness-of-fit test. Indi-
vidual data point influence was assessed 
by DFBETA values, which measure the 
amount that model coefficients change 

when a data point is deleted, and by hat 
matrix values, which measure the degree to 
which a data points’ covariate values are in 
an unusual part of the covariate space 
which may allow them to distort the pa-

Table 2. Severity of late blight epidemics in five locations in southern Idaho from 1995 to 2003a 

Year Parma Twin Falls Rupert Aberdeen Rexburg 

1995 3 2 2 0 0 
1996 2 1 1 0 0 
1997 1 4 4 4 0 
1998 1 4 4 4 3 
1999 0 0 0 0 2 
2000 0 0 0 0 0 
2001 0 1 1 0 0 
2002 0 0 0 0 0 
2003 1 0 0 1 0 

a Severity was estimated for each location using a 0-to-4 scale adapted from Zwankhuizen and Zadoks 
(27) where 0 = no late blight observed or reported; 1 = late blight reported in a very limited number
of fields in only part of the region with, on average, very low disease levels per field; 2 = late blight
reported in most of the region in a limited number of fields with, on average, low or intermediate
disease levels per field; 3 = Late blight reported in many fields in all of the region with, on average, 
intermediate disease levels per field; and 4 = late blight reported in most fields in all of the region
with, on average, high disease levels per field. 

 

Fig. 1. Location of weather stations (Aberdeen, Parma, Rexburg, Rupert, and Twin Falls) across south-
ern Idaho used for collection of weather data for logistic regression modeling of late blight occurrence 
from 1995 to 2003. 
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rameter estimates of the model (10). The 
Hosmer-Lemeshow goodness-of-fit test is 
conducted by dividing the observations into 
groups of predicted probabilities, and com-
paring observed with expected counts of 
disease occurrence in these categories (10). 

For the binary model, disease was pre-
dicted to occur when the predicted prob-
ability exceeded a prespecified cutoff value 
of 0.3 (discussed below). For the ordinal 
model, the probability function that gave the 
highest probability value was considered to 
be the predicted disease intensity level for 
that year. Sensitivity was favored over 
specificity because it is considered more 
beneficial to overpredict disease rather than 
underpredict disease in regions where late 
blight does not occur regularly (13). There-
fore, models were adjusted to overpredict 
outbreak years by redefining the prediction 
cutoff value from 0.5 to 0.3. The cutoff 
value of 0.3 was chosen based upon the 
ability of the model to predict with higher 
sensitivity without compromising specific-
ity. Thus, if the predicted probability was 
≥0.3, observations were classified as disease 
events (disease years), and if the predicted 
probability was <0.3, observations were 
classified as nonevents (no disease years). 

Performance of both models was evalu-
ated for accuracy (percentage of years 
correctly identified), sensitivity (percent-
age of outbreak years correctly identified, 
DI = 1), and specificity (percentage of 
nonoutbreak years correctly identified, DI 
= 0). Predictions from the binary model 
were evaluated via three different types of 
cross-validation. The first method for esti-
mating cross-validation errors was pro-
duced by SAS PROC LOGISTIC, which 
calculated a predicted probability of dis-
ease for the current observation based on a 
model that is fitted without the current 
observation. The second method used was 
a leaving one out-cross validation method, 
where error rate estimates were calculated 
with year as the data left out (for each 
year, a model was fitted without that year, 

and then predictions for the left-out year 
were compared with the actual disease 
incidence for that year). These error esti-
mates for each year then were pooled to 
obtain one set of error estimates. The third 
method for estimating error rates used ex-
ternal data validation, using an independent 
data set from three regions across the Co-
lumbia Basin (Hermiston, OR; Prosser, WA; 
and Othello, WA) from 1995 to 2003. Data 
were collected from Agrimet (Hermiston, 
OR) and the Washington State University 
Public Agricultural Weather System for 
Othello and Prosser, WA. Disease incidence 
data were obtained for each year and region 
from Dr. Dennis Johnson (Washington State 
University). In each case, data were input 
into the binary model and classified as no 
disease or disease years based upon the 0.3 
probability of disease used in the binary 
model self-validation tests. For the ordinal 
model, a proportional-odds test was con-
ducted to assess whether evidence existed of 
unequal slopes for the four model logit 
equations, and resubstitution predictions 
were used to estimate prediction errors. 
These resubstitution error rates are optimis-
tically biased, but were used to compare 
predictions between the ordinal model and 
the binary model. 

RESULTS 
Binary model. Of the 12 weather vari-

ables examined from potato-producing 
regions across southern Idaho, two were 
significant in predicting disease occurrence 
in the logistic regression model: the 
amount of precipitation (mm) during April 
and May (APm) (P = 0.0389) and number 
of favorable hours (10ºC ≤ temperature [T] 
≤ 27°C, RH ≥ 80%) in April and May 
(HF80m; Table 3) (P = 0.0254). The re-
sulting binary model had a logit score of: 

lf = –2.9783 + 0.0243 (HF80m) + 0.2754 (APm ) 
(eq. 7) 

Binary model assessment. For the 
model shown in equation 7, a few observa-

tions had moderately high DFBETA and 
hat values, and the Hosmer-Lemeshow test 
had a P value of 0.087, indicating some 
lack of fit. To further investigate the de-
pendence of the model on influential data 
points, the five observations with the larg-
est hat values were deleted and the logistic 
regression analysis with backward selec-
tion was repeated. In this analysis, only the 
number of favorable hours remained sig-
nificant, yielding a revised model:  

lf = –2.014 + 0.0352 (HF80m) (eq. 8)

This model had acceptable DFBETA 
and hat values, the intercept and coeffi-
cient for HF80m were similar to those in 
the original model, and the Hosmer-
Lemeshow test indicated a better fit to the 
data (P = 0.37); therefore, this model was 
adopted as the final binary model. 

Binary model validation. The three 
types of cross-validation were applied to 
the model in equation 8 and are reported 
here based on the probability cutoff of 0.3. 
The reduced data set without the five in-
fluential data points was used for the first 
two sets of estimates. The SAS cross-
validation error estimates for the model 
with HF80m was 72.5% accurate (29/40 
years of disease incidence correctly pre-
dicted), with sensitivity of 75% (12/16 
disease presence years correctly pre-
dicted) and specificity of 70.8% (17/24 
disease absence years correctly pre-
dicted). The leave-1-year-out method 
yielded an estimated accuracy of 67.5% 
(27/40), sensitivity of 75% (12/16), and 
specificity of 62.5% (15/24). The error 
estimates based on external validation, 
using disease occurrence in regions of the 
Columbia Basin from 1995 to 2003, gave 
estimates of 80.8% accuracy (21/26 years 
of disease incidence correctly predicted), 
84% sensitivity (21/25 disease presence 
years correctly predicted), and 0% speci-
ficity (0/1 disease absence years correctly 
predicted). 

Ordinal model. The ordinal model was 
selected based on the results of the back-
ward selection procedure. The ordinal 
logistic regression model developed to 
predict disease severity (0 to 4) using the 
April to June data set had the following 
variables: amount of precipitation (APj), 
and the number of favorable hours (10ºC ≤ 
T ≤ 27ºC, RH ≥ 80%; HF80j). The ordinal 
model includes four equations for predict-
ing disease levels (0 to 4), constructed 
using coefficient estimates of variables and 
intercept values found to be significant in 
the model (Table 4):  

lf1 = –2.9716 + (HF80j) 0.0123 + (APj) 0.3973 
(eq. 9) 

lf2 = –4.1004 + (HF80j) 0.0123 + (APj) 0.3973 
(eq. 10) 

lf3 = –4.8329 + (HF80j) 0.0123 + (APj) 0.3973 
(eq. 11) 

lf4 = –5.2688 + (HF80j) 0.0123 + (APj) 0.3973 
(eq. 12) 

Table 4. Coefficient estimates for variables identified by an ordinal logistic regression analysis for 
predicting the level of yearly disease occurrence of potato late blight in southern Idaho 

Parameter df Estimate Standard error Walden’s χ2 P > χ2 

Intercept 4 1 –5.27 1.08 23.72 <0.0001 
Intercept 3 1 –4.83 1.03 21.63 <0.0001 
Intercept 2 1 –4.1 0.96 17.92 <0.0001 
Intercept 1 1 –2.97 0.85 12.04 0.0005 
HF80ja 1 0.012 0.01 7.80 0.0052 
APjb 1 0.397 0.16 5.76 0.0163 

a Number of favorable hours (10ºC ≤ temperature ≤ 27ºC, relative humidity ≥80%), April to May. 
b Amount of precipitation (mm) from April to May. 

Table 3. Coefficient estimates for predicting the occurrence of potato late blight in southern Idaho
from the final binary logistic regression model 

Parameter df Estimate Standard error Walden’s χ2 P > χ2 

Intercept 1 –2.0139 0.6812 8.74 0.0031 
HF80ma 1 0.0352 0.0128 7.60 0.0058 

a Number of favorable hours (10ºC ≤ temperature ≤ 27ºC, relative humidity ≥80%), April to May. 
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Although the variables HF80j and APj 
were significant for the ordinal model, the 
proportional odds test was significant (P = 
0.043), indicating that the coefficients for 
HF80j and APj should vary across logit 
equations, and the predictions did not im-
prove upon those found with the binary 
model. The optimistically biased resubsti-
tution error estimates showed some prom-
ise for ruling out disease (22 of 25 disease-
absent years correctly predicted), but not 
good performance for predicting disease 
presence, because only 8 of the 20 years 
that were positive (disease levels 1 to 4) 
were predicted to have a positive disease 
level. 

DISCUSSION 
The first objective to determine if re-

gional weather variables could be related 
to the occurrence of late blight in southern 
Idaho was accomplished by using logistic 
regression analysis to determine the rela-
tionship between weather variables and 
late blight incidence for five locations in 
southern Idaho over a 9-year period. Of the 
12 variables, 1 was found to relate to late 
blight occurrence in southern Idaho. This 
binary model identified the hours of com-
bined occurrence of favorable temperature 
(10ºC ≤ T ≤ 27ºC) and humidity (RH > 
80%) from April to May (HF80m) as sig-
nificant predictors of disease occurrence. 
In the work of Zwankhuizen and Zadoks 
(27), the 90% RH used to define favorable 
hours was ineffective for this study and 
was lowered to an 80% RH level to define 
favorable periods, similar to the work re-
ported by Gudmestad et al. (6). The num-
ber of days with precipitation was not as 
important as the amount of precipitation, 
which is different from the results of John-
son (13,14) and Zwankhuizen and Zadoks 
(27). The Netherlands model identified the 
number of days with precipitation in Sep-
tember and the total global radiation in 
September as being important in classify-
ing outbreaks (27). We chose to limit our 
investigations to periods of time that 
would be useful in making forecasts which 
did not include data from September, a 
period of time that occurs late in the grow-
ing season of southern Idaho. Other fore-
casts that have been used to predict the 
occurrence of late blight have used periods 
of high relative humidity (1,4,15,23,26,27). 
Even though the early Dutch rules didn’t 
directly measure periods of high humidity 
(25), the four parameters used to identify 
blight-favorable weather corresponded 
with conditions of high humidity. Rainfall 
also has been an important factor in late 
blight prediction models (4,9,13,14,19,23,
25,27). 

The binary model (0 = no outbreak, 1 = 
late blight outbreak) was tailored to liber-
ally predict disease outbreaks by specify-
ing a predicted probability cut-off value of 
0.30. This was done to give a more liberal 
prediction of disease in an attempt to 

minimize the probability of not predicting 
late blight when late blight occurs. Sensi-
tivity (75% accurate in correctly classify-
ing outbreak years) of the binary model 
was higher than specificity (62.5% accu-
rate in correctly classifying nonoutbreak 
years), using the leave-1-year-out esti-
mates. Poor model specificity was not 
problematic from a practical point of view 
in southern Idaho. Due to the hot, dry cli-
mate of the area and the sporadic nature of 
late blight over the last 10 years, many 
potato producers in southern Idaho enter 
each growing season with the default as-
sumption that late blight won’t occur. Un-
der these circumstances, a model was not 
needed to help potato producers decide not 
to apply fungicides for late blight man-
agement. Growers have found that few 
(two to three) fungicide applications are 
required in non-late-blight years to manage 
potato early blight. Due to the decreasing 
prices being paid for potato, growers typi-
cally desire minimum fungicide input dur-
ing a growing season. The real benefit of a 
model for use in southern Idaho would be 
to give potato growers a warning when the 
probability for late blight is high so that 
additional fungicide applications could be 
made early in the season prior to initial late 
blight identification. 

The second objective of the study was to 
determine if disease severity could be es-
timated using variables found to be corre-
lated with the annual occurrence of late 
blight. This objective also was realized 
using logistic linear regression (ordinal 
model). Similar to the binary model, the 
ordinal model found amount of rain (APj) 
and the number of favorable hours (10ºC ≤ 
T ≤ 27ºC, RH ≥ 80%; HF80j) during the 
early growing season to be significant 
variables in predicting late blight severity. 
However, lower sensitivity than in the 
binary model was a result of underpredict-
ing outbreak years. This model was unable 
to effectively estimate the correct severity 
of disease, and was not useful for predict-
ing disease severity on an ordinal disease 
index. The ordinal model had more pa-
rameters that had to be accounted for and 
less data were available (outbreak years 
were spread into four categories). Addi-
tionally, a higher proportion of years were 
nonoutbreak years (25/45) than outbreak 
years (20/45), making it harder to con-
struct a model tailored to predict outbreak 
years. 

Factors other than weather variables 
have the potential to contribute to the se-
verity of late blight in a given year, con-
tributing to reduced accuracy of the binary 
and ordinal models. Potato growers in 
southern Idaho in 1997 were not prepared 
for the severe epidemic based on minimal 
historical experience with late blight. As a 
result, fungicide applications were applied 
later than would be deemed acceptable and 
late blight was very severe. Also, the late 
blight pathogen could migrate from areas 

where late blight establishment was fa-
vored by early-season weather to areas 
where early-season weather was unfavor-
able. Almost all potato plants in southern 
Idaho are grown under irrigation, and these 
conditions can favor pathogen infection 
during the growing season. Under these 
conditions, the ordinal model would pre-
dict an absence of late blight in the unfa-
vorable area, but late blight would have 
been reported. Conversely, weather condu-
cive to late blight in one area may motivate 
growers to apply fungicides in a timely 
manner, increasing the protection of the 
crop. These reasons may provide some 
explanation as to the relatively low sensi-
tivity of the ordinal model. 

The third objective was to test our 
model on an independent data set of the 
Columbia Basin region. The binary model 
was more successful than the ordinal 
model in self-validation tests and, thus, 
was chosen for testing of the independent 
data set. The binary model was validated 
successfully using an independent data set 
from three regions across the Columbia 
Basin region of Washington (Prosser and 
Othello) and Oregon (Hermiston) from 
1995 to 2003. The successful use of our 
model in the Columbia Basin may have 
been due to the similarities between south-
ern Idaho and the Columbia Basin weather 
and climate. Additionally, the Columbia 
Basin area has had a long history of late 
blight occurrences and, thus, was a useful 
area for testing the efficacy of our binary 
model because we could compare disease 
incidence with predicted disease incidence. 
The binary model was extremely accurate 
(80.8%) and had a high sensitivity (84%), 
but was unable to predict 1 year of no late 
blight occurrence (0% specificity). Al-
though there are similarities between the 
weather and climate of the Columbia Basin 
and southern Idaho, the variables signifi-
cant for disease forecasting were dissimilar 
between the regions. The binary model 
was successful at forecasting late blight in 
southern Idaho when the weather was fa-
vorable according to the variable HF80m 
(10ºC ≤ T ≤ 27ºC), which may reflect dif-
ferences in relative humidity between the 
two production areas. In the Columbia 
Basin model, the number of days of rain-
fall may correspond to field conditions 
favorable for disease development such as 
cool temperature and high humidity, but 
this variable was not significant in predict-
ing disease for southern Idaho. Conditions 
in the field may be similar between the two 
regions, but the difference in variables may 
reflect the unique environments of south-
ern Idaho and the Columbia Basin. Thus, 
from this external data validation analysis, 
we can surmise that the binary model was 
successful in predicting the occurrence of a 
late blight year in semi-arid climates. 

Evaluating weather data from April to 
June with combined forecasts both from 
the highly sensitive binary model and the 
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highly specific ordinal model together may 
provide a useful tool for more accurate late 
blight prediction. Binary model output 
would be available at the end of May. If 
the model predicted late blight to occur, 
potato producers could feel somewhat 
confident that late blight will be present 
due to the high sensitivity of the binary 
model. If the ordinal model predicted an 
absence of late blight, growers could as-
sume that the default assumption of no late 
blight was true based on the high specific-
ity of the ordinal model. Fortunately, in 
only 3 of the 45 observations (7%) did late 
blight occur when both forecasts predicted 
a “0” year. 

Qualitative analysis of disease occur-
rence in the Netherlands (27) and Colum-
bia Basin model (13,14) were successfully 
constructed using large amounts of past 
weather data, usually in the 25- to 50-year 
range for each region studied. In the quali-
tative analysis of southern Idaho disease 
occurrence, there was less weather data 
available to analyze. Subsequently, a lar-
ger geographic region was used for sam-
pling data. Specifically, weather data were 
collected from five locations across south-
ern Idaho (Fig. 1). Late blight first was 
identified in southern Idaho in 1995 (18), 
limiting the number of years available for 
analysis. Additionally, P. infestans is a 
relatively new pathogen in southern Idaho, 
with sporadic occurrences. Therefore, it 
will be useful to continue collecting 
weather data for further analysis of the 
model so that this model can be refined 
and improved. 

When using weather data to construct a 
predictive model, it is necessary to con-
sider the window of time in which a fore-
cast will be useful. Subsequently, weather 
data that might extend past a window of 
time from which a prediction can be made 
and action can be taken was not used. 
Consequently, this model does not repre-
sent a complete description of the patho-
gen life cycle, but does give a reliable 
prediction in a time frame useful for potato 
producers. In both models, only two vari-
ables from category C (factors affecting 
formation of inoculum early in the grow-
ing season) were significant in predicting 
disease: rain and favorable temperature 
and humidity. During this time frame, 
potato seed pieces are cut, planted, and 
emerge as young seedlings. During the 
cutting process, healthy seed tubers can be 
contaminated with P. infestans sporangia 
produced by blighted tubers (16). Develop-
ing sprouts may become infected even 
when seed tubers have been treated with 
protectant seed piece fungicides (20). Once 
above ground, growing plants also could 
become infected by sporangia produced on 
infected volunteer potato plants or from 

potato plants growing in cull piles. Free 
moisture in the form of rain may create 
environmental conditions favorable for 
sprout infection either in the soil or after 
emergence. Precipitation and periods of 
high humidity and moderate temperatures 
early in the season would favor these 
events, and were the variables most closely 
related to the occurrence of late blight in 
southern Idaho. 

BLITECAST assumes that inoculum is 
present every year and that late blight epi-
demics will begin at a very low intensity 
(15). Although these assumptions may 
hold true in southern Idaho, weather favor-
able for the establishment of primary in-
oculum may not always be present. Con-
sequently, semi-arid regions such as 
southern Idaho have been in need of a 
qualitative yearly predictive model to give 
a preliminary prediction of the probability 
of late blight development before going 
into the growing season. If a yearly fore-
cast predicts a given year to have a high 
probability of late blight development, 
then a second forecast such as BLITE-
CAST could be deployed as a predictive 
model for scheduling of fungicide sprays 
during the growing season. Further re-
search into this possibility is currently 
underway. 
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