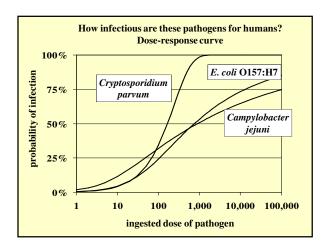
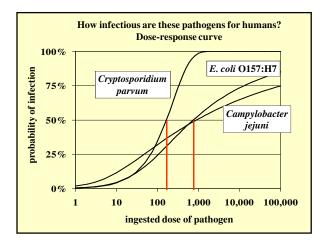


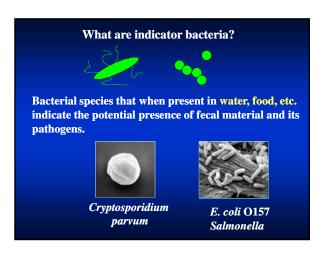
Waterborne zoonotic pathogens of *primary* concern North American list

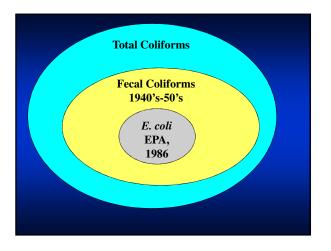

- (1) pathogenic for humans
- (2) shed by an animal
- (3) verified cause of waterborne illness

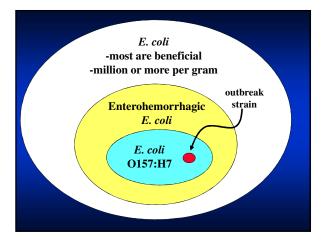
Protozoa

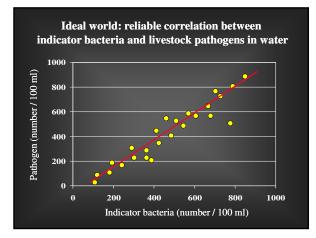

- ✤ Cryptosporidium parvum
- ✤ Giardia duodenalis

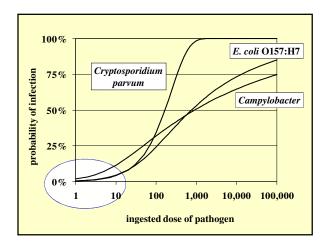
Bacteria

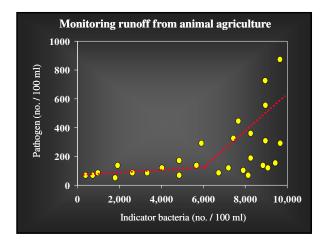

- ♦ *E. coli* O157:H7
- ✤ Salmonella enterica
- ♦ Campylobacter jejuni

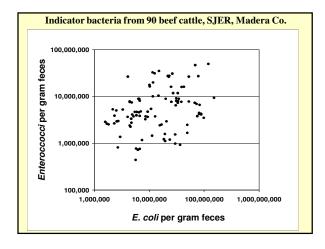


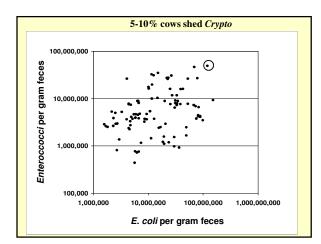




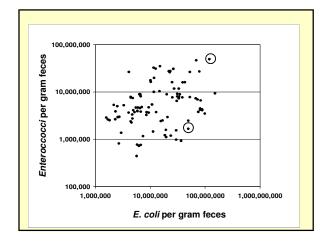




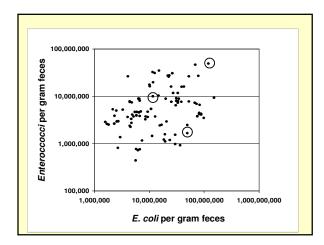


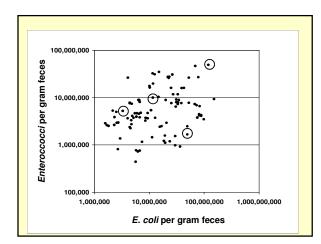


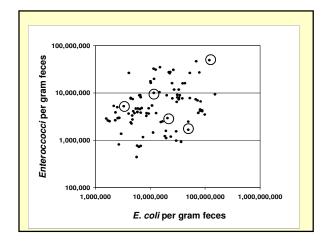
POOR CORRELATION BETWEEN INDICATORS AND LIVESTOCK PATHOGENS

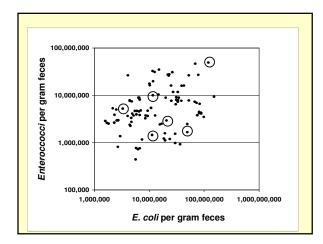

Indicator E. coli versus Cryptosporidium

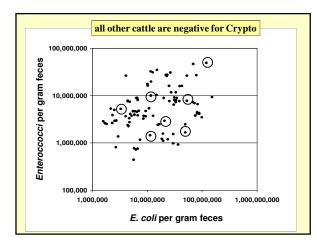
100% of cattle shedding ~50 million *E. coli* / g feces BUT

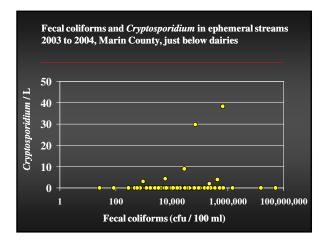

5% to 10% of cows shed *Cryptosporidium* on any day; shed 1 to 50 Crypto oocysts / g feces










Poor correlation between indicators and *Cryptosporidium* from cattle

Cattle shed ~50 million *E. coli* / g feces <u>Adults</u>: <10 Crypto / g feces

5 million E. coli for every Crypto oocyst

<u>Calves</u>: 10,000 Crypto / g feces 5 thousand *E. coli* for every Crypto oocyst

Similar problems with Salmonella and E. coli O157

EXAMPLES OF STANDARDS FOR BACTERIA

<u>E. coli / 100 ml</u>

- geometric mean <126 bacteria
- single grab sample <235 bacteria

Fecal coliform / 100 ml

- geometric mean <200 bacteria
 geo-mean <14 bacteria in Tomales Bay
 keep upland runoff <250 bacteria

8

The task of staying below the indicator standard for animal agriculture

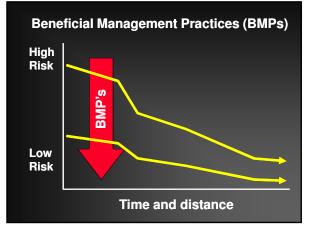
<u>EXAMPLE</u> Cows shed 50 million fecal coliforms / g feces Defecate 20 Kg per day

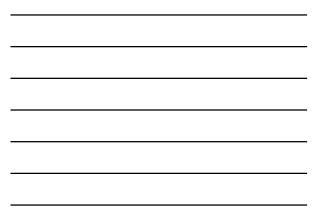
So, cow excretes a trillion fecal coliforms per day

Need fecal coliform <250 bacteria / 100 ml

Need to retain A LOT of fecal coliforms

or you need A LOT of dilution


The task of staying below the indicator standard for animal agriculture


<u>EXAMPLE</u> Cows shed 50 million fecal coliforms / g feces Defecate 20 Kg per day So, cow excretes a trillion fecal coliforms per day

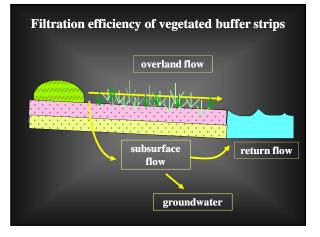
Need fecal coliform <250 bacteria / 100 ml

Need to retain A LOT of fecal coliforms or you need A LOT of dilution

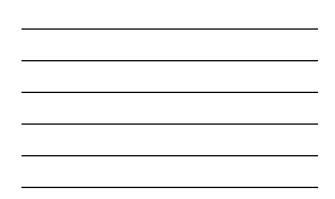
Need several million gallons of water for 1 Kg feces

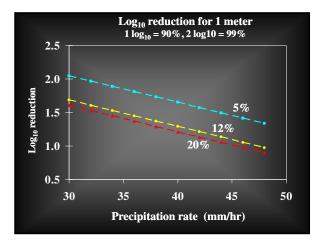
Reducing waterborne pathogen risks from livestock

	PROCESS	GOAL FOR BMP
•	pathogen loading	prevalence & intensity, animal density
	pathogen transport: overland and subsurface	enhance infiltration, attachment, sedimentation
•	pathogen survival & replication	enhance rate of inactivation, prevent multiplication

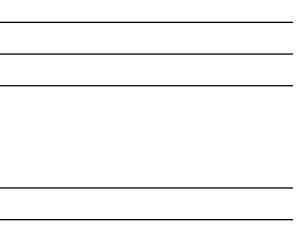

Reducing waterborne livestock	Reducing waterborne pathogen risks from livestock				
PROCESS	GOAL FOR BMP				
pathogen loading	prevalence & intensity, animal density				
 pathogen transport: overland and subsurface 	enhance infiltration, attachment, sedimentation				
 pathogen survival & replication 	enhance rate of inactivation, prevent multiplication				

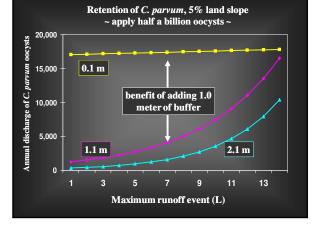
Reducing waterborne livestock	Reducing waterborne pathogen risks from ivestock			
PROCESS	GOAL FOR BMP			
pathogen loading	prevalence & intensity, animal density			
• pathogen transport: overland and subsurface	enhance infiltration, attachment, sedimentation			
 pathogen survival & replication 	enhance rate of inactivation, prevent multiplication			

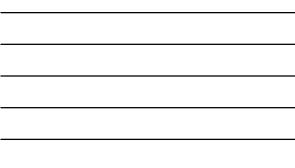


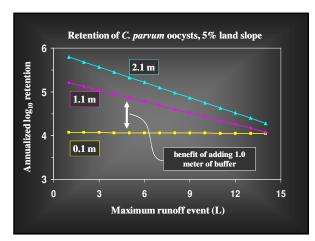

 Log_{10} reduction as a measure of VBS filtration Start with <u>1000</u> pathogens Reduce to <u>100</u> = 90% reduction = 1 log₁₀ reduction Reduce to <u>10</u> = 99% reduction = 2 log₁₀ reduction Reduce to <u>1</u> = 99.9% reduction = 3 log10 reduction

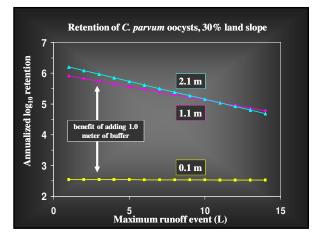
Predicted log ₁₀ reductions per meter VBS							
		Bulk density (g/cm ³)					
Soil	Slope (%)	0.7	1.0	1.3	1.7		
capay silty clay	5	2.2	2.0	1.8			
	10	3.1	2.5	1.9			
	20	2.7	2.4	2.1			
argonaut loam	5		2.4	1.8			
	10		2.9	1.9			
	20		2.8	2.1			
hanford fine							
sandy loam	5			1.7	1.4		
	10			1.7	1.0		
	20			1.9	1.4		

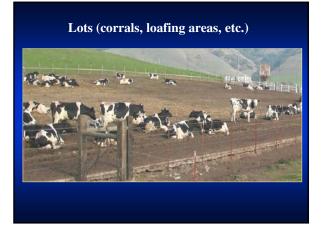

Buffer width (m) 0.1, 1.1, 2.1


Land slope (%) 5, 20, 35


<u>RDM (kg/ha)</u> 225, 560, 900, 4500


2 rainfall seasons

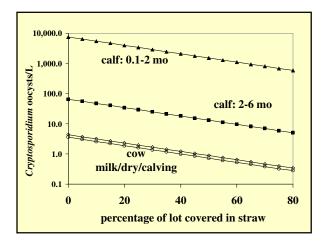


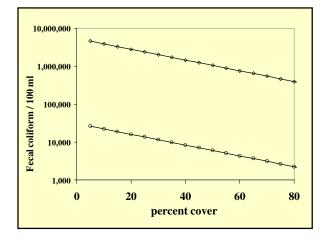


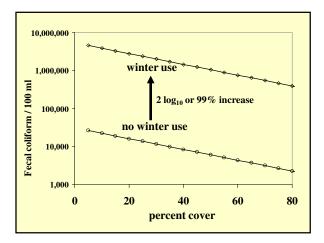


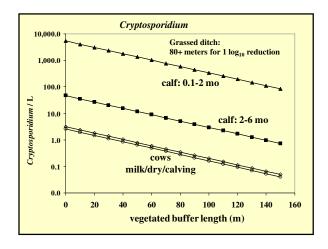
Hillslope grassland buffers can retain *E. coli* from bovine feces

- >95% *E. coli* retained in pat or first 10 cm (6 in) of buffer
- **50% to 99.9%** reduction in *E. coli* per meter (yard) of buffer
- ~40% of all *E. coli* left the site during worst rainstorm event: *buffers fail at high rainfall intensity*



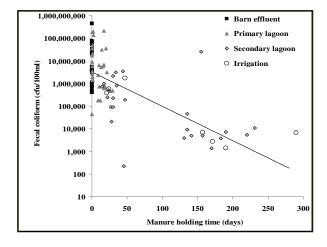




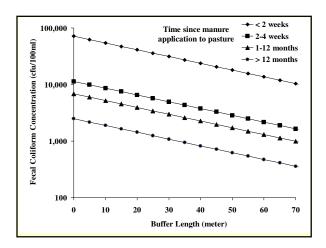


Reducing the risk of waterborne microbial contamination from livestock and wildlife


PROCESS	
pathogen loading	


pathogen transport

- pathogen survival & replication
- enhance infiltration, overland and subsurface attachment, sedimentation enhance rate of inactivation, prevent multiplication


prevalence & intensity, animal density

GOAL FOR BMP

