# UNIVERSITY OF CALIFORNIA COOPERATIVE EXTENSION 

## SAMPLE COSTS TO ESTABLISH AND PRODUCE ORGANIC BLUEBERRIES IN THE COASTAL REGION OF SOUTHERN CALIFORNIA, SAN LUIS OBISPO, SANTA BARBARA, AND VENTURA COUNTIES, 2007



Etaferahu Takele, UCCE Area Farm Advisor, Agricultural Economics/Farm Management, Southern California

Ben Faber, UCCE Farm Advisor, Soils and Water, Avocados and Minor Subtropicals, Santa Barbara/Ventura Counties

Mark Gaskell, UCCE Farm Advisor, Specialty Crops, Vegetables and Small Farms, Santa Barbara and San Luis Obispo County
Getachew Nigatu, UCCE Staff Research Associate, Agricultural Economics/Farm Management, Southern California

Ihab Sharabeen, UCCE Staff Research Associate, Agricultural Economics/Farm Management, Southern California

[^0]
# SAMPLE COSTS TO ESTABLISH AND PRODUCE ORGANIC BLUEBERRIES IN THE COASTAL REGION OF SOUTHERN CALIFORNIA, SAN LUIS OBISPO, SANTA BARBARA, AND VENTURA COUNTIES, 2007 <br> Table of Contents 

Page
3
INTRODUCTION
3
ASSUMPTIONS: CULTURAL PRACTICES AND COST CALCULATIONS
4
Farm Size and Crop Characteristics
Land Preparation ..... 4
Wood Waste and Compost Application ..... 4
Acidification ..... 5
Planting ..... 5
Pruning ..... 5
Fertilization ..... 6
Irrigation ..... 7
Pest Management ..... 7
Pollination ..... 8
Frost Protection ..... 8
Harvesting and Marketing ..... 9
Yield ..... 9
Labor Costs ..... 9
Equipment Operating Costs ..... 9
Cash Overhead Costs ..... 10
Non-Cash Overhead Costs ..... 11
Crop Returns ..... 12
SUMMARY ..... 13
PROFIT ANALYSIS ..... 14
ACKNOWLEDGMENTS ..... 15
TABLES IN THE TEXT
Table A. Fertilizer Application Rates in Organic Blueberry Production in San Luis Obispo, Santa Barbara, and Ventura Counties ..... 6
Table B. Bird Control Materials and Installation Costs for Organic Blueberry Production in San Luis Obispo, Santa Barbara, and Ventura Counties, 2007 ..... 8
Table C. Estimated Annual Yield of Organic Blueberry Production in San Luis Obispo, Santa Barbara, and Ventura Counties ..... 9
Table D. Los Angeles Terminal Market Prices for Imported Blueberries (January-May, 2005-2007), Percentage of Crop Harvested and Marketed, and Weighted Average Price ..... 13
Table E. Estimated Annual Yield and Gross Income of Organic Blueberry Production in San Luis Obispo, Santa Barbara, and Ventura Counties, 2007 ..... 13

## FIGURE

Figure 1. Proportion of Organic Blueberry Production Costs in San Luis Obispo, Santa Barbara, and Ventura Counties, 2007

## COSTS OF PRODUCTION AND RETURNS TABLES

Table 1. Sample Costs per Acre to Establish Organic Blueberries in San Luis Obispo, Santa Barbara, and Ventura Counties, 2007

Table 2. Costs per Acre by Category to Produce Organic Blueberries in San Luis Obispo, Santa Barbara, and Ventura Counties, 2007

Table 3. Costs per Acre by Operation to Produce Organic Blueberries in San Luis Obispo, Santa Barbara, and Ventura Counties, 2007

$$
\begin{aligned}
& \text { Table 4. Costs and Returns per Acre to Produce Organic Blueberries in } \\
& \text { San Luis Obispo, Santa Barbara, and Ventura Counties, } 2007
\end{aligned}
$$

$$
\begin{aligned}
& \text { Table 5. Monthly Cash Costs per Acre to Produce Organic Blueberries in } \\
& \text { San Luis Obispo, Santa Barbara, and Ventura Counties, } 2007
\end{aligned}
$$

Table 6. Whole Farm Equipment, Investment, and Business Overhead Costs Based
on a-10 Acre Organic Blueberry Farm in San Luis Obispo, Santa Barbara, and
Ventura Counties, 2007

Table 7. Hourly Equipment Costs to Produce Organic Blueberries in
San Luis Obispo Santa Barbara, and Ventura Counties, 2007 ..... 22

Table 8. Range Analysis: Analysis of Costs and Returns for Producing Organic Blueberries at Varying Yields and Prices in San Luis Obispo, Santa Barbara, and Ventura Counties, 2007

Table 9. Break-Even Prices (\$ Per Pound) of Organic Blueberry Production in
San Luis Obispo, Santa Barbara, and Ventura Counties, 2007 ..... 24

Table 10. Break-Even Yields (Pounds Per Acre) of Organic Blueberry Production in
San Luis Obispo, Santa Barbara, and Ventura Counties, 2007

REFERENCES 25

# SAMPLE COSTS TO ESTABLISH AND PRODUCE ORGANIC BLUEBERRIES IN THE COASTAL REGION OF SOUTHERN CALIFORNIA, SAN LUIS OBISPO, SANTA BARBARA, AND VENTURA COUNTIES, 2007 

## INTRODUCTION

Blueberry production in the United States began with collection of wild berries growing in the Eastern and Northeastern states. Then during the early to mid 1900s, cultivated blueberry production began with the breeding of northern highbush type blueberries, developed in the cooler regions of the United States including New Jersey, Massachusetts, Maine, Michigan and eventually moving west into Oregon, and Washington. In the mid 1970's, a cooperative plant breeding effort between the USDA and several universities in the southeastern US - including the University of Florida - led to the release of the first low-chill requirement "southern" highbush blueberry for early season production in the southeast. In the late 1990s, efforts to grow blueberries began in California based on these southern highbush types and blueberry plantings have continued to expand since that time (Jimenez, et al, 2005). As of 2007, it is estimated that over 4000 acres of blueberries are planted in California.

Sample costs to establish and produce organic blueberries in the Coastal Region of southern California (CRSC) particularly in San Luis Obispo (SLO), Santa Barbara, and Ventura counties are presented in this study. Operations described are based on production practices considered typical for the area and may not apply to every situation. The study is intended as a guide for making production decisions, estimating potential returns, preparing budgets and evaluating production loans. A blank "Your Costs" column in some of the cost tables is provided for entering and comparing individual farm costs with ours.

The hypothetical farm operations (production practices) and cost calculations are described in the assumptions section. For additional information or explanations of the assumptions and calculations used in this study, please contact Eta Takele, the Area Farm Management Advisor, or Ben Faber and Mark Gaskell, Farm Advisors in Ventura, Santa Barbara, and San Luis Obispo counties, respectively. This cost study can be accessed from the following websites: the Farm Management Website of the University of California Cooperative Extension Program for Southern California at: http://groups.ucanr.org/farmgt, the University of California Hansen Trust website at: http://groups.ucanr.org/Hansen/index.cfm and the University of California, Department of Agricultural and Resource Economics websites at Davis at: http://coststudies.ucdavis.edu.

## ASSUMPTIONS: CULTURAL PRACTICES AND COST CALCULATIONS

The discussion in this section includes production practices (inputs, application rates and time of application and methods). Input prices, contract fees and service expenses that are not mentioned in the text are included in Table 4. Prices and costs are for the year 2007.

The use of trade names in this report does not constitute an endorsement or recommendation by the University of California nor is any criticism implied by omission of other similar products.

Organic Certification: Production of organic crop requires special growing conditions. Growers must follow the certified organic production requirements in compliance with the USDA National Organic Program (NOP). Check with an approved organic certifier to determine all compliance related issues. All cultural practices mentioned in this document are intended to comply with NOP certification guidelines.

Farm Size and Crop Characteristics: This study is based on 10 acres of organic blueberry production.

Blueberries are a perennial crop with a production life of over 20 years. In California, many cultivars are still under investigation for their adaptability and suitability to the region. Therefore, growers may be switching to a new cultivar even before the full productive life of the planting is reached. In this study, we are assuming a 23 year life (i.e. three years of establishment and 20 years production period). It should also be noted that the time of establishment may be variable depending upon the size of the plant at planting, the suitability of the growing area to the blueberry plant and the effectiveness of the cultural practices.

Land Preparation: Many blueberry plantings in the coastal southern California production areas are established in what had been strawberry or vegetable production fields. However, for this study, the blueberry planting is based on open or new land (not previously cultivated). Therefore operations and costs of land preparation, irrigation installations and/ or fertility management could be higher than previously cultivated land.

Land preparation operations include first clearing off weeds, bushes, roots and plants followed by application of 5 tons per acre of compost and bed preparation. Growers usually use contract operators to get land preparation done (Table 1). The field is then marked with flags where holes are dug for planting; an operation considered taking one minute per plant.

Wood Waste and Compost Application: Compost at 5 tons per acre is applied as a preplant fertilizer. During establishment years, wood waste in the form of coarse, wood waste is applied to promote growth of the young blueberry plants. On heavier, slow to drain soils, wood waste is incorporated into beds prior to planting. Application of wood waste may range from 4 to 6 inches deep and covers a 4 feet band centered on the plant row. The wood waste has to be replenished regularly as it will deteriorate over time. Deteriorated wood waste adds organic matter to the soil and creates favorable environment for root growth, however, root damage can occur if it is not replenished as needed. In this study, it is assumed that 50 tons of wood waste per acre will be applied during the first year, and replenished with about 20 tons per acre every two years. Wood waste costs around $\$ 10$ per ton. In this study, we assume that the farmer needs around 5 manhours per acre for application of wood waste during the first year and 2 man-hours per acre every
two years. On very sandy soil, wood waste is applied on the surface. It does not need to be incorporated.

Acidification: The blueberry plant is acid-loving with the optimum soil pH level in the 4.0 to 5.0 range. It is important to analyze soil samples to determine the initial pH of the soil and the level of sulfur needed for acidification. In the coastal California region, adjustments are usually necessary since most soils have pH levels between 6.7 and 8.0. Adjustments for organic blueberry production are made using organically certified pelletized sulfur application ranging from 3,000 pounds per acre to 7,000 pounds per acre. For this study, we used sulfur application at 5,000 pounds per acre before planting. Labor cost for sulfur application is estimated at $\$ 120$ per acre. Also, incorporation of sphagnum peat in the planting hole will also lower soil pH , thus helping adjust the acid environment for plant establishment.

Soil pH monitoring is important. Soil pH above 5.0 will cause plants to grow very slowly and remain weak. Plants that grow on land with an improper pH may become yellow, grow poorly and also may show a sign of iron deficiency or chlorosis and it should be corrected with an iron chelate application.

Soil pH can be adjusted using citric or acetic acid (vinegar) in the irrigation water at a rate of 780 pounds per acre per year. In this study, citric acid is assumed to be applied annually throughout the life of the crop. In addition, 200 pounds per acre per year sulfur will be applied.

Organically certified iron chelate fertilizers may be applied as a drench, injected into the irrigation system or applied as a foliar spray. Iron helps plant growth even when the soil pH has not fallen to the optimum range of 4.5 to 5.0.

Planting: Bushes used for planting may range from 12 to 18 months old. According to field trial results, a number of Southern Highbush cultivars are well adapted to Southern California. Among them Emerald, Jewel, Star, Saphire, Sharpblue, and Misty are the most popular cultivars in California. However, distribution of some patented blueberry cultivars may be limited to specific nurseries; therefore availability may be an issue. Farmers must check with the blueberry nurseries for timing of plant availability before they plan plantings.

Plant spacing may vary among growers. In this study, we assume plant spacings are 2.5 feet between plants within a row and 10 feet between rows allowing 1,750 plants per acre. The cost of plants is approximated $\$ 3.50$ each and planting in the coastal region can occur at any time. For this study, planting is in the month of June. Some of the bushes ( $\sim 2 \%$ ) may not survive in the first year; and will be replanted in the second year.

Most growers use contract or hired labor to perform the planting operation. At planting, sphagnum peat moss for lowering pH is incorporated into each hole at a rate of 1 bale for 40 bushes. Incorporation of the peat moss and planting each is assumed to take one minute per bush.

Pruning: Pruning is required to maintain the vigor and productivity of blueberry plants including making the farm accessible for disease and insect inspection and management, as well as providing easy access for harvest by removing low-fruiting branches or canes. For hand harvest, bushes are kept within easy picking height. Annual pruning is essential for consistent production of high quality fruit.

Pruning immediately after harvest has the advantage of allowing rapid shoot re-growth and flower bud initiation before the plant enters into the slow growth period of winter months. Studies have shown that pruning following transplanting stimulates new vegetative growth. In the first year, pruning involves primarily stripping off flowers and fruit. The cost of pruning in the first year is estimated at $\$ 250$ per acre. Beginning the second year, hand pruning is performed every year and is estimated to take 0.5 minutes per plant.

Fertilization: Table A provides the approximate amount of fertilizer requirement for organic blueberry production. Compost ( 5 tons/acre) is incorporated prior to planting and this will supply approximately 100 lb each of $\mathrm{N}, \mathrm{P}$, and K . Liquid fish fertilizer (Agrilizer 6-2-2 or similar) is commonly applied in organic blueberry production as a source of nitrogen ( N ), phosphorus ( P ) and potassium ( K ). In the first year, N fertilizer application is from pre-plant compost. Beginning the second year, N application is mainly from Agrilizer or similar liquid fish fertilizer. In the second year application includes 10 pounds N per acre per month from December to May and 15 pounds N per acre per month from June to November. Beginning the third year, N application includes 15 pounds per acre from December to May and 30 pounds per acre per month from June to November.

Iron chelate application can be done either as a foliar spray or injected into the irrigation system. Iron chelate will relieve plants from iron deficiency related to soils with pH above 5.3. In this analysis, iron chelate is applied using the irrigation system; two times (June and July) for the first year and four times (April, May, June and July) per year from the second year on. Iron Chelate is applied at the rate of 5 pounds per acre per time.

## Table A. Fertilizer Application Rates in Organic Blueberry Production in San Luis Obispo, Santa Barbara, and Ventura Counties

|  | Amount of <br> Compost <br> Tons per Acre | Amount of <br> Agrilizer <br> Pounds per Acre | Amount of <br> Nitrogen <br> Pounds per Acre | Amount of <br> Iron Chelate <br> Pounds per Acre |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 5 |  | 100 | 10 |
| 2 |  | 2500 | 150 | 20 |
| 3 |  | 4500 | 270 | 20 |
| Production |  | 4500 | 270 | 20 |

Blueberry plants need a consistent soil moisture level for a fertilizer program to be effective. The plants are shallow rooted therefore to ensure consistent soil moisture; frequent irrigation with small amounts of water must be applied.

Soil and leaf analyses are done annually to determine the nutrient levels. Soil analysis must begin in the first year of planting while leaf analysis beings in the third year. N, Phosphorous (P), Potassium ( K ), Zinc ( Zn ) and Boron (B) levels will be analyzed from one sample. Soil and leaf laboratory analyses are approximated to cost $\$ 25$ and $\$ 20$ per acre per year, respectively. Irrigation water analysis should also be done periodically to determine the presence of nitrate, salinity, pH , chloride and sodium in well water.

Irrigation: Growers in San Luis Obispo, Santa Barbara, and Ventura Counties use both district water and on-site wells for irrigation. Well water provides the majority of the growers' needs in San Luis Obispo and Santa Barbara Counties. District water may be delivered, stored and pumped from a reservoir through a filtration system. Water costs are calculated based upon the use of both well and district sources. For this study, based on growers' feedback, water cost is estimated at $\$ 22.10$ per acre-inch.

Water application is estimated at 24 acre-inches per acre per year during both the establishment and the production period. Irrigation is applied weekly for about 44 weeks per year from February to November (except for the first year, the number of irrigation applications will be 26 from planting in June to November). No assumption is made about effective rainfall, evaporation, or runoff. Information on evapotranspiration and rainfall if needed are available from various sources including the Fox Canyon Groundwater Management Agency (http://www.foxcanyongma.org) and the California Irrigation Management Information System (CIMIS) at www.cimis.water.ca.gov/cimis.

Labor to irrigate, and to monitor systems and check a field is estimated to take about 15 minutes per irrigation or 11 hours for the 44 annual irrigations.

Pest Management: Blueberry growers should check their field continuously and control fungal and bacterial diseases as well as arthropods and vertebrates in order to ensure good productivity. Pest control in organic production is mainly done using cultural practices. For information and pesticide use permits, contact the local county agricultural commissioner's office or a Pest Control Adviser (PCA). For information on cultural control of blueberry pests, consult the Integrated Pest Management (IPM) guidelines that are applicable for cultural control of other fruit crops or contact the local University of California Cooperative Extension Farm Advisors. Written recommendations made by licensed pest control advisors are required for use of many pesticides. PCAs can also be hired to monitor fields for pests and recommend nutrition. Following are descriptions of disease and pest control practices of in organic blueberry production.

Weeds: Weed control begins in the second year and for organically produced blueberries includes mowing three times a year and hand weeding twice a year which takes approximately 160 hours per acre per year.

Diseases: Fruit and foliar diseases in organic blueberry production can be controlled through selection of cultivars that are less susceptible and maintaining the farm with good cultural
practices. Stem and root diseases are more difficult to control. Selection of disease free plant stocks, removing and discarding infected plant parts, raising beds with wood waste, and selecting a well drained ground will help to reduce the incident and severity of root and stem diseases.
Fungal diseases: Fungal diseases in blueberry production in California include Botrytis blight (Botrytis cinerea) which affects the stem of the plant, as well as the fruit and the flower. In organic blueberry production, fungal diseases can be controlled with an annual application of copper at approximately 2 pounds per acre beginning in the second year. Phytophthora can be a problem in poorly drained soils; which can be avoided with selection of site that is possibly free of Phytophthora and with good land preparation.

Bacterial disease: Canker (Pseudomonas spp.) is a common bacterial disease that affects the stem and leaf of the blueberry plant. Control for organically produced blueberries is usually only through pruning out all affected parts of the plant.

Bird control: One of the most important challenges of blueberry production is the control of fruit damage by birds. Each year about 10 to nearly 100 percent of the blueberry crop can be lost to bird destruction. Netting is the only strategy that will completely reduce bird damage, though it is expensive and difficult to move around during cultural practices. In this study, it is assumed that growers will install polyethylene netting material during the third year. In addition to netting, at least one hour per week for five months (during harvesting) is needed for monitoring and maintaining the bird control system.

Bird netting replacement may be necessary every five years. Table $B$ presents the cost breakdown of the bird control system for blueberry production.

Table B. Bird Control Materials and Installation Costs for Organic Blueberry Production in San Luis Obispo, Santa Barbara, and Ventura Counties, 2007

| Items | Amount | Units | Price (\$ Per Unit) | Total Cost (\$) |
| :--- | :---: | :---: | :---: | :---: |
| Net | 23000 | ft | 0.1 | 2300 |
| Post | 115 | each | 10 | 1150 |
| Wire | 5000 | ft | 0.1 | 500 |
| Materials, Cement and Other |  |  |  | 250 |
| Labor for Installation | 10 | hr | 13.3 | 133 |
| Total Costs for One Acre (\$) |  |  |  | 4333 |
| Total Costs for Ten Acre (\$) |  |  |  | 43330 |

Pollination: Cross pollination improves blueberry yield. Planting different cultivars in alternate rows can facilitate cross pollination. Planting the same cultivar within a row is, however, advantageous for ease of harvesting, so it is recommended not to mix varieties within the same row. Two Beehives per acre will be placed in the field beginning the second year. A beehive can be rented at approximately $\$ 125$ a year.

Frost Protection: Sprinkler irrigation is used for frost protection of fruits especially that are early in the season from rare periods of frost damage along the Coast. This additional investment
is needed to protect early season fruits with high market prices. The system requires approximately 50 sprinkler heads, capable of delivering 3,000 gallons per hour per acre. An automatic temperature sensor and irrigation pump starter unit may also be needed or else manual overnight temperatures monitoring will be required. The estimated cost for frost protection system with an automatic controller ranges from $\$ 1,500-\$ 2,000$ per acre. In this study, the cost of the frost protection is included in the irrigation system.

Harvesting and Marketing: We assumed that the berry bushes at planting are already one year old or more. Hence fruit bearing may start as early as 6 months after planting. Fruit is picked into buckets mostly using hired or contract labor. Some blueberry varieties begin to ripen by mid-December and usually finished by mid-June. Full ripening takes several days (3-5) after they turn blue. In this study, we assume that $10 \%$ of the crop is harvested and marketed in January, $15 \%$ in February, $20 \%$ in March, $40 \%$ in April and $15 \%$ in May.

Picking costs are estimated at $\$ 0.70$ per pound and packing which includes pallet, clam shells, boxes is estimated at $\$ 1.50$ per pound. Also $\$ 0.65$ per pound is assumed for cooling, loading and quality control. Early season coastal blueberry growers typically move the fruit directly to market without additional storage fees. Marketing and brokerage fees are estimated at $\$ 0.75$ per pound, ( $10 \%$ of blueberry prices).

Yield: Yield estimates include 1 pound per bush in the second year, 4 pounds per bush in the third and an average of 8 pounds per bush beginning the $4^{\text {th }}$ year.

## Table C. Estimated Annual Yield of Organic Blueberry Production in San Luis Obispo, Santa Barbara, and Ventura Counties

|  | Number of <br> Fruit Bearing <br> Bushes Per Acre | Average Yield <br> Pounds Per <br> Bush | Total Yield <br> Pounds Per <br> Acre |
| :---: | :---: | :---: | :---: |
| 2 | 1715 | 1 | 1715 |
| 3 | 1750 | 4 | 7000 |
| Production | 1750 | 8 | 14000 |

Labor Costs: Wage rates for both the owner and hired labor are estimated at $\$ 13.15$ per hour for machine operator and $\$ 11.80$ per hour for non-machine labor. Labor wages include payroll taxes, workman compensation and other overhead costs associated with employment benefits.

Equipment Operating Costs: Machinery repair costs are calculated using purchase prices, annual hours of use, total hours of life, and repair coefficients formulated by the American Society of Agricultural Engineers (ASAE). Fuel and lubrication costs are also determined by ASAE equations based on maximum PTO horsepower and fuel type. According to the data from the USDA-NASS, prices for on-farm delivery of diesel and gasoline are $\$ 2.30$ and $\$ 2.80$ per gallon, respectively. The fuel, lube, and repair costs per acre for each operation are determined by multiplying the equipment hourly operating cost by the number of hours per acre needed to
perform the operation. Tractor and ATV time is $10 \%$ higher than implement time for a given operation to account for setup, travel and down time. Formulas for calculating equipment operating costs can be referenced from many farm management books including the one we frequently use for our studies (Boelje, Michael D., and Vernon R. Eidman. 1984. Farm Management, John Wiley and Sons. New York, New York).

Cash Overhead Costs: Cash overhead costs consist of all cash expenses that are incurred in the blueberry farm but are not accounted for in the production practices. These costs include interest on operating capital, property taxes, office expenses, liability and property insurances, sanitation services, equipment repairs, and management.

Interest on Operating Capital: The cost of borrowing or the opportunity cost (interest on operating capital) for money used in blueberry production is charged at $10 \%$ nominal interest rate on all operating expenses. Nominal interest rate is the current short term charge set by financial institutions for operating loans.

Property Taxes: Real estate property taxes depend on the value of the property and local zoning ordinances. We calculated property taxes at $1.0 \%$ (the rate most counties commonly charge) of the value (price) of land. For non-real estate properties, property taxes are estimated at $1.00 \%$ of the average values of the properties. Average values equal the price of the investment plus salvage value divided by two. Property taxes are then divided by the number of acres to obtain the per acre costs.

Property Insurance: Property loss coverage insurance is charged annually at $0.70 \%$ of the average value of the properties over their useful life. Property insurances are also divided by the number of acres to obtain the per acre costs.

Liability Insurance: Liability insurance costs to cover for accidents on the farm vary by size of farm. The cost of liability insurance for a 10 acre farm is approximately $\$ 437$ per year ( $\$ 44$ per acre per year).

Field Sanitation: Regulations require one toilet and hand washing facility for each 20 employees of each sex, located within a quarter mile walk, or if not feasible, at the closest point of vehicular access. As an alternative to providing the required toilet and hand washing facilities themselves, employers may transport employees conducting hand-labor operations to toilet and hand washing facilities (refer to specifications Cal/OSHA Field Sanitation Standard, Section 3457, Title 8, California Code of Regulations).

For this study, one double mounted toilet facility is considered sufficient for the 10 acres for use throughout the year. The rent for the facility is approximated at $\$ 270$ per acre per year.

Office Expense: Expenses for office rent, supplies, telephone, fax, internet, accounting, legal fees, utilities and miscellaneous administrative expenses are estimated at $\$ 350$ per acre per year.

Investment Repair: Annual repair and maintenance costs for farm buildings, tools and reservoir are calculated at $2 \%$ of the price (value) of the investment. For irrigation system and bird control, annual maintenance and repair costs are calculated at $5 \%$ of the cost of the system.

Management/Supervisor Salaries: Management charges are not included in this study. We suggest that growers divide the returns after all costs between management and profit as they see fit.

Organic Certification Charges: California Certified Organic Farmers (CCOF) certification charges of $\$ 825, \$ 1350$, and $\$ 3000$ per year are included in the second, third and production years, respectively.

Non-Cash Overhead Costs: Non-cash overhead costs, also referred to as ownership or fixed costs of farm assets including equipments, farm buildings, irrigation system, and farm tools are calculated using the capital recovery method. This method captures the combined cost of depreciation and interest on capital investment.

The capital recovery method of calculating depreciation and interest on investment is more complex than other methods, but more accurately represents the annual costs of ownership. It is similar to the discounted annual payment on a loan for the investment with the down payment equal to the salvage value. The formula for calculating the annual capital recovery is:
[(Purchase Price - Salvage Value) x Capital Recovery Factor] + (Salvage Value x Interest Rate). Where:

Salvage Value: The remaining value of machinery and equipment at the end of their useful life is assumed to be $10 \%$ of the purchase price. Other investments including irrigation systems, buildings, and miscellaneous equipments (fuel tanks and pumps) are assumed to depreciate fully with no remaining values.

Capital Recovery Factor: The discounted present value of $\$ 1$, the annual capital recovery multiplier.

Interest Rate: The ten year average long-run rate of return of agricultural assets to current income (7.25\%--USDA-ERS-Economic Research Services data).

Following are the descriptions of the farm investments used in blueberry production.
Equipment: The farm complement is assumed to include both new and old equipment and machinery with an overall approximate current value of $60 \%$ of new prices. Capital recovery costs for machinery and equipment used in this study are shown in Table 6.

Irrigation and Frost Protection System: The irrigation system is assumed to include an on-site reservoir for storing water that is supplied by the districts; pumps (a new 15 horsepower booster
pump lifting water to about 20 -feet); a filtration station; drip irrigation lines (installed before planting); a fertilizer injector (installed at planting), and sprinklers. The drip lines are used for irrigating the crop and sprinklers are used when irrigation is needed for frost protection. The cost to establish the irrigation system including the frost protection system is estimated at $\$ 3,500$ per acre ( $\$ 35,000$, for a 10 acre farm). Frost protection alone could cost $\$ 1,500$ to $\$ 2,000$ per acre. In addition, an acid injector may be installed to maintain the acid condition of irrigation water unless the fertilizer injection system is built to serve for acid injection as well. The irrigation system has a life of 23 years.

Building: Certified organic production requires its own, dedicated facilities. The farm shed is assumed to be 1,500 square feet of metal buildings built on cement slab.

Shop Tools: Organic blueberry production requires its own dedicated shop tools including pruning tools, picking containers, pH measurement kit and other miscellaneous farm tools dedicated to it. Also a 100 -gallon fuel tank is considered to service the farm. The fuel tank must be situated on a cement containment pad built to meet federal, state, and county regulations.

Land Rent: In many cases, especially in California the value of land is influenced by a rapid urban development in which case the price of land is driven not by its agricultural use but by the speculative value of its future use. Some cost studies exclude the land rent in which case the bottom line figure of net returns can be referred as returns to management and land. Growers may choose to divide this figure between management and land rent as they see fit.

Land rent is estimated at $7.25 \%$ opportunity cost (that is equivalent to a ten year average longrun rate of return of agricultural assets to current income) times $\$ 35,000$ per acre value of land (which is approximated as an average for San Luis Obispo, Santa Barbara, and Ventura counties).

Establishment Costs: The cumulative net cash, the sum of all cash costs less returns over the three years, $\$ 974$ per acre ( 9,740 for 10 acres) is called the establishment/development costs. Establishment cost is amortized over 20 years (the expected useful life of the bushes) to get the annual opportunity cost of the investment plus depreciation of the bushes.

Crop Returns: The fruit is sold through wholesale markets. Grower prices in this study are approximated at $\$ 7.50$ per pound. This price is calculated using the weighted average price of Los Angeles Terminal Market Prices for the imported blueberries for the period January to May 2005 to 2007 (Table D) plus $15 \%$ price premium (according to the United States Department of Agriculture) for organic fruits. The gross income estimates during the establishment and production years is given in Table E below.

Table D. Los Angeles Terminal Market Prices for Imported Blueberries (January-May, 2005-2007), Percentage of Crop Harvested and Marketed, and Weighted Average Price

| Month | Price (\$/lb) |  |  | $\begin{gathered} \hline \text { Average } \\ \text { Price (\$/lb) } \end{gathered}$ | Percentage Share | Weighted Average Price (\$/lb) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2005 | 2006 | 2007 |  |  |  |
| January | 4.48 | 3.96 | 4.85 | 4.43 | 10 | 0.44 |
| February | 4.07 | 5.83 | 4.83 | 4.91 | 15 | 0.74 |
| March | 5.27 | 6.77 | 6.09 | 6.04 | 20 | 1.21 |
| April | 10.54 | 7.38 | 6.66 | 8.19 | 40 | 3.28 |
| May | 6.40 | 4.12 | 6.92 | 5.81 | 15 | 0.87 |
| Total |  |  |  |  | 100 | $\approx 6.55$ |

Table E. Estimated Annual Yield and Gross Income of Organic Blueberry Production in San Luis Obispo, Santa Barbara, and Ventura Counties, 2007

| Year | Yield <br> Pounds Per Acre | Gross Income <br> (\$ Per Acre) |
| :---: | :---: | :---: |
| 2 | 1,715 | 12,863 |
| 3 | 7,000 | 52,500 |
| Production | 14,000 | 105,000 |
| (yrs 4-20) |  |  |

Crop prices and grower returns may, however, differ depending on the time of selling and the supply and demand condition of the market. Therefore, returns using various scenarios of prices and yield combinations are provided in Table 8. Growers may choose the returns that best reflect their specific situation. Crop values of the establishment years are used to offset costs.

## SUMMARY

Organic blueberry establishment and production costs in this study are based on the most common or typical operations expressed by growers in the Coastal Region of San Luis Obispo Santa Barbara, and Ventura counties of California, but can vary depending upon management and cultural practices.

Our estimate of the total accumulated net cash cost during the three years period of blueberry establishment in San Luis Obispo, Santa Barbara, and Ventura counties of California is $\$ 974$ per acre (Table 1). The annual production cost including harvesting (assuming 14,000 pounds per acre yield) is $\$ 63,581$ per acre or $\$ 4.54$ per pound (Tables 2, 3 and 4). Table 2 shows costs by category, Table 3 by type of operation and Table 4 by type of production input. Due to rounding, the totals may not be exactly the same in all tables.

The proportion of production costs by category is shown in the pie graph below. It includes about $9 \%$ in cultural costs (such as pruning, weed control, pest control, fertilization, and
irrigation), 79\% harvesting (picking, packing, cooling and handling, and marketing and brokerage fees). Cash overhead costs including liability insurance, soil analysis, leaf analysis, sanitation fee, office expenses, property taxes, property insurance, investment repairs, and organic certification charges are estimated to account for about 4\%; non-cash overhead or annual ownership costs estimates of land rent, equipments, buildings, tools, and irrigation system account for $7 \%$ and interest on operating capital for $1 \%$.

Figure 1. Proportion of Organic Blueberry Production Costs in San Luis Obispo, Santa Barbara, and Ventura Counties, 2007


PROFIT ANALYSIS
Profitability is measured using the unit cost of production (or break-even prices) as well as the gross and economic margins. Break-even levels (costs per unit of production) compared with market prices provide the margin of profit. Break-even levels are calculated as the cost of production per acre divided by yield per acre. Gross margin (or returns above cash costs) is what growers often refer to as profit if there is no debt on the farming operation. It approximates the return to management and investment. If we deduct depreciation, it also approximates the taxable income of the investment. Gross margin is calculated as gross returns (price times yield) minus cash costs of production. Economic profit or the net returns above all total costs including management can be zero or positive. A zero economic profit should not be alarming if all costs including the owners' labor and management are included in the production cost.

The break-even price using our assumption of 14,000 pounds per acre yield at maturity is $\$ 4.54$ per pound. The gross margin estimate using the same yield level and an average price of $\$ 7.50$
per pound is $\$ 45,679$ per acre. In this study we did not calculate the economic returns because we did not include management charges. Information was not available for it.

Crop yield and prices received by growers may vary. To accommodate such variation, we provided unit costs of production (break-even prices), gross margins and returns to management and profit at various price and yield levels (Table 8). The table included lower and higher than the average price and yield.

## ACKNOWLEDGEMENTS

The authors thank the growers in the San Luis Obispo, Santa Barbara, and Ventura counties of the coastal region of southern California who have been the main source of information for this study. We also thank those who participated in the review of this study and appreciate the secondary sources (research papers) that enhanced our understanding of the organic blueberry production.

Table 1. Sample Costs per Acre to Establish Organic Blueberries in San Luis Obispo, Santa Barbara, and Ventura Counties, 2007

| Year | Year 1 | $\begin{gathered} \text { Year 2 } \\ \text { Cost per Acre (\$) } \\ \hline \end{gathered}$ | Year 3 |
| :---: | :---: | :---: | :---: |
| OPERATIONS |  |  |  |
| LAND PREPARATION: (Contract) |  |  |  |
| Brush Removal | 450 |  |  |
| Root Removal \& Burn | 350 |  |  |
| Rip Field | 375 |  |  |
| Bed Preparation | 500 |  |  |
| TOTAL LAND PREPATION COSTS | 1675 |  |  |
| PRE PLANT:(Contract, Labor, Material and Equipment operating Costs ) |  |  |  |
| Acidification | 1220 |  |  |
| Flag fields | 438 |  |  |
| Drill holes | 438 |  |  |
| Compost | 282 |  |  |
| TOTAL PREPLANT COSTS | 2378 |  |  |
| PLANT:(Contract, Labor, Material and Equipment operating Costs ) |  |  |  |
| Plants | 6524 | 140 |  |
| Peat Moss ( @ 1minute per bush) | 829 | 18 |  |
| TOTAL PLANTING COSTS | 7353 | 158 |  |
| CULTURAL:(Contract, Labor, Material and Equipment Operating Costs ) |  |  |  |
| Irrigation | 401 | 759 | 759 |
| Acidification -Sulfur |  | 44 | 44 |
| Weed control |  | 1888 | 1888 |
| Mow strip |  | 24 | 24 |
| Fungicide |  | 26 | 26 |
| Pruning ( $0.5 \mathrm{~min} /$ plant year 2 on ) | 250 | 172 | 172 |
| Wood Waste | 637 | 127 | 127 |
| Fertilize (Iron Chelate) | 107 | 214 | 214 |
| Fertilize (Agrilizer) |  | 502 | 862 |
| Citric Acid | 499 | 988 | 987 |
| Pollination |  | 250 | 250 |
| Bird control |  |  | 502 |
| TOTAL CULTURAL COSTS | 1894 | 4994 | 5855 |
| HARVEST: (Contract) |  |  |  |
| Picking (\$0.70 per Pound) |  | 1201 | 4900 |
| Packing ( $\$ 1.50$ per Pound) |  | 2572 | 10500 |
| Cooling and Handling(\$0.65 per Pound) |  | 1115 | 4550 |
| Marketing and Brokerage Fees ( $\$ 0.75$ per Pound) |  | 1286 | 5250 |
| TOTAL HARVESTING COSTS |  | 6174 | 25200 |
| Interest on Operating Capital @ 10\% | 845 | 367 | 567 |
| TOTAL OPERATING COSTS | 14145 | 11693 | 31622 |
| CASH OVERHEAD: |  |  |  |
| Liability Insurance | 44 | 44 | 44 |
| Office Expenses | 350 | 350 | 350 |
| Interest- Cash Overhead Costs | 79 | 83 | 100 |
| Interest-Establishment Net Cash Cost |  | 1580 | 1796 |
| Soil Analysis | 25 | 25 | 25 |
| Leaf Analysis |  |  | 20 |
| Field Sanitation | 270 | 270 | 270 |
| Organic Certification Charges | 0 | 83 | 135 |
| Property Taxes | 392 | 394 | 415 |
| Property Insurance | 274 | 275 | 291 |
| Investment Repairs | 225 | 225 | 442 |
| TOTAL CASH OVERHEAD COSTS | 1659 | 3330 | 3888 |
| TOTAL ALL CASH COSTS | 15804 | 15023 | 35510 |
| INCOME FROM PRODUCTION | 0 | 12863 | 52500 |
| NET CASH COSTS FOR THE YEAR | 15804 | 2160 | -16990 |
| ACCUMULATED NET CASH COSTS | 15804 | 17964 | 974 |
| NON-CASH OVERHEAD (CAPITAL RECOVERY): |  |  |  |
| Irrigation System (Including Frost Protection) | 317 | 317 | 317 |
| Land Rent | 2537 | 2537 | 2537 |
| Shop Building | 181 | 181 | 181 |
| Shop Tools | 44 | 44 | 44 |
| Bird Control-Net | 0 | 0 | 565 |
| Bird Control-Rest of Material (Post, Wire, Cement and Labor) | 0 | 0 | 191 |
| Equipment | 265 | 331 | 331 |
| TOTAL NON-CASH OVERHEAD COSTS | 3344 | 3410 | 4166 |
| TOTAL ALL COSTS | 19148 | 18433 | 39676 |
| RETURNS/INCOME FROM PRODUCTION | 0 | 12863 | 52500 |
| TOTAL NET COST FOR THE YEAR | 19148 | 5570 | -12824 |
| TOTAL ACCUMULATED NET COST | 19148 | 24718 | 11894 |

Table 2. Costs per Acre by Category to Produce Organic Blueberries in San Luis Obispo, Santa Barbara, and Ventura Counties, 2007

| OPERATION | $\begin{gathered} \hline \text { Operation } \\ \text { Time } \\ \text { (Hrs/A) } \\ \hline \end{gathered}$ | Labor Cost | Fuel, Lube \& Repairs | Costs per Acre (\$) |  | Total Cost | Your Cost |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Material Cost | Custom or Rent |  |  |
| CULTURAL: (Contract, Labor, Material, \& equipment costs) |  |  |  |  |  |  |  |
| Irrigation -44 weeks/year for 15 minutes/irrigation | 11.0 | 174 | 55 | 530 | 0 | 759 |  |
| Weed Control-hand weeding for 160 hours \&Roundup | 160.0 | 1888 | 0 | 0 |  | 1888 |  |
| Mow Strip- 3X | 1.5 | 24 | 0 | 0 | 0 | 24 |  |
| Fungicide 1X- Copper Champion @ 21b/acre | 0.5 | 8 | 0 | 18 | 0 | 26 |  |
| Pruning - 0.5 minutes per plant | 14.6 | 172 | 0 | 0 |  | 172 |  |
| Wood Waste -20 tons for 2 years | 1.0 | 16 | 12 | 100 | 0 | 128 |  |
| Acidification-Sulfur | 0.0 | 0 | 0 | 44 | 0 | 44 |  |
| Acidification-Citric Acid | 4.4 | 52 | 0 | 936 |  | 988 |  |
| Fertilize-Agrilzer $4500 \mathrm{lbs} /$ acre or@ 270 lbs of $\mathrm{N} /$ acre | 4.4 | 52 | 0 | 810 | 0 | 862 |  |
| Fertilize- - Iron Chelate @ 5 lbs per time 4X a month | 8.0 | 94 | 0 | 120 |  | 214 |  |
| Pollination - Rent \$ $125 /$ hive \& 2 hives/acre | 0.0 | 0 | 0 | 0 | 250 | 250 |  |
| Bird Control-labor for 24 hours/acre and ATV operating cost | 24.0 | 379 | 124 | 0 | 0 | 503 |  |
| TOTAL CULTURAL COSTS | 229.4 | 2859 | 191 | 2558 | 250 | 5856 |  |
| HARVEST: |  |  |  |  |  |  |  |
| Picking (\$0.70/b) | 0 | 0 | 0 | 0 | 9800 | 9800 |  |
| Packing (\$1.50/lb) | 0 | 0 | 0 | 0 | 21000 | 21000 |  |
| Cooling and Handling(\$0.65/lb) | 0 | 0 | 0 | 0 | 9100 | 9100 |  |
| Marketing and Brokerage Fees (\$0.75/lb) | 0 | 0 | 0 | 0 | 10500 | 10500 |  |
| TOTAL HARVEST COSTS | 0 | 0 | 0 |  | 50400 | 50400 |  |
| Interest on Operating Capital @ 10\% |  |  |  |  |  | 792 |  |
| TOTAL OPERATING COSTS/ACRE |  | 2859 | 191 | 2558 | 50650 | 57048 |  |
| CASH OVERHEAD: |  |  |  |  |  |  |  |
| Liability Insurance |  |  |  |  |  | 44 |  |
| Office Expenses |  |  |  |  |  | 350 |  |
| Interest- Cash Overhead Costs |  |  |  |  |  | 108 |  |
| Leaf Analysis |  |  |  |  |  | 20 |  |
| Soil Analysis |  |  |  |  |  | 25 |  |
| Field Sanitation |  |  |  |  |  | 270 |  |
| Organic Certification Charges |  |  |  |  |  | 300 |  |
| Property Taxes |  |  |  |  |  | 420 |  |
| Property Insurance |  |  |  |  |  | 294 |  |
| Investment Repairs |  |  |  |  |  | 442 |  |
| TOTAL CASH OVERHEAD COSTS |  |  |  |  |  | 2273 |  |
| TOTAL ALL CASH COSTS |  |  |  |  |  | 59321 |  |
| NON-CASH OVERHEAD: |  |  |  |  |  |  |  |
|  |  | Unit Price | Capital Recovery <br> Per year (\$) |  |  |  |  |
|  |  | \$ Per Acre |  |  |  |  |  |
| Irrigation System |  | 3500 |  | 317 |  | 317 |  |
| Land Rent |  | 35000 |  | 2537 |  | 2537 |  |
| Shop Building |  | 2000 |  | 181 |  | 181 |  |
| Shop Tools |  | 500 |  | 44 |  | 44 |  |
| Establishment Costs- Accumulated Net Cash Cost |  | 974 |  | 94 |  | 94 |  |
| Bird Control-Net |  | 2300 |  | 565 |  | 565 |  |
| Bird Control-Rest of Material (Post, Wire, Cement and Labor) |  | 2033 |  | 191 |  | 191 |  |
| Equipment |  | 2421 |  | 331 |  | 331 |  |
| TOTAL NON-CASH OVERHEAD COSTS |  |  |  |  |  | 4260 |  |
| TOTAL ALL COSTS |  |  |  |  |  | 63581 |  |

Table 3. Costs per Acre by Operation to Produce Organic Blueberries in San Luis Obispo, Santa Barbara, and Ventura Counties, 2007

| OPERATION | Operation <br> Time <br> (Hours <br> Per Acre) | Costs Per Acre (\$) |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Labor Costs | Material Costs | Custom or Rent Costs | Equipment |  |  | Operating Interest Costs | Total Cost | $\begin{aligned} & \text { Your } \\ & \text { Cost } \end{aligned}$ |
|  |  |  |  |  | Capital <br> Recovery Costs | Cash Overhead Tax \& Insurance Costs | Operating <br> (Fuel, <br> Lubricant <br> \& Repair <br> Costs |  |  |  |
| CULTURAL: |  |  |  |  |  |  |  |  |  |  |
| Irrigation | 11 | 174 | 530 | 0 | 15 | 1 | 55 | 40 | 815 |  |
| Weed Control | 160 | 1888 | 0 | 0 | 0 | 0 | 0 | 142 | 2030 |  |
| Mow Strip | 2 | 24 | 0 | 0 | 41 | 2 | 0 | 1 | 68 |  |
| Fungicide | 1 | 8 | 18 | 0 | 25 | 1 | 0 | 1 | 53 |  |
| Pruning | 15 | 172 | 0 | 0 | 0 | 0 | 0 | 7 | 179 |  |
| Wood Waste | 1 | 16 | 100 | 0 | 212 | 16 | 12 | 4 | 360 |  |
| Acidification-Sulfur | 0 | 0 | 44 | 0 | 0 | 0 | 0 | 1 | 45 |  |
| Acidification-Citric Acid | 4 | 52 | 936 | 0 | 0 | 0 | 0 | 54 | 1042 |  |
| Fertilize (Agrilizer) | 4 | 52 | 810 | 0 | 0 | 0 | 0 | 47 | 909 |  |
| Fertilize (Iron Chelate) | 8 | 94 | 120 | 0 | 0 | 0 | 0 | 13 | 227 |  |
| Pollination | 0 | 0 | 0 | 250 | 0 | 0 | 0 | 21 | 271 |  |
| Bird Control | 24 | 379 | 0 | 0 | 40 | 2 | 124 | 40 | 585 |  |
| TOTAL CULTURAL | 229 | 2859 | 2558 | 250 | 333 | 22 | 191 | 371 | 6583 |  |
| HARVEST: |  |  |  |  |  |  |  |  |  |  |
| Picking | 0 | 0 | 0 | 9800 | 0 | 0 | 0 | 82 | 9882 |  |
| Packing | 0 | 0 | 0 | 21000 | 0 | 0 | 0 | 175 | 21175 |  |
| Cooling and Handling | 0 | 0 | 0 | 9100 | 0 | 0 | 0 | 76 | 9176 |  |
| Marketing and Brokerage Fees | 0 | 0 | 0 | 10500 | 0 | 0 | 0 | 88 | 10588 |  |
| TOTAL HARVEST | 0 | 0 | 0 | 50400 | 0 | 0 | 0 | 421 | 50821 |  |
| TOTAL OPERATING |  | 2859 | 2558 | 50650 | 333 | 22 | 191 | 792 | 57404 |  |


| CASH OVERHEAD | 44 |
| :--- | :---: |
| Liability Insurance | 350 |
| Office Expenses | 108 |
| Interest- Cash Overhead Costs | 20 |
| Leaf Analysis | 25 |
| Soil Analysis | 270 |
| Field Sanitation | 300 |
| Organic Certification Charges | 407 |
| Investment Property Taxes | 285 |
| Investment Property Insurance | 442 |
| Investment Repairs | $\mathbf{2 2 5 1}$ |
| TOTAL CASH OVERHEAD |  |

## NON-CASH OVERHEAD

$\left.\begin{array}{lccc} & \begin{array}{c}\text { Unit Price } \\ \text { \$Per Acre }\end{array} & \begin{array}{c}\text { Capital Recovery } \\ \text { Per year (\$) }\end{array} \\ \text { Irrigation System } & 3500 & 337\end{array}\right)$

Table 4. Costs and Returns Per Acre to Produce Organic Blueberries in San Luis Obispo,

|  | $\begin{aligned} & \hline \text { Quantity } \\ & \text { Per } \\ & \text { Acre } \end{aligned}$ | Unit | Price or Cost Per Unit (\$) | Value or Cost Per Acre (\$) | Your Cost |
| :---: | :---: | :---: | :---: | :---: | :---: |
| GROSS RETURNS: BLUEBERRY | 14000 | lb | 7.50 | 105000 |  |
| OPERATING COSTS: |  |  |  |  |  |
| Irrigation |  |  |  |  |  |
| Water | 24 | acin | 22.1 | 530 |  |
| Fungicide |  |  |  |  |  |
| Copper Champion | 2 | lb | 9 | 18 |  |
| Wood Waste |  |  |  |  |  |
| Wood Waste | 10 | ton | 10 | 100 |  |
| Acidification |  |  |  |  |  |
| Citric Acid | 780 | lb | 1.2 | 936 |  |
| Sulfur | 200 | lb | 0.22 | 44 |  |
| Fertilizer |  |  |  |  |  |
| Agrilizer | 4500 | lb | 0.18 | 810 |  |
| Iron Chelate | 20 | lb | 6 | 120 |  |
| Pollination |  |  |  |  |  |
| Beehives | 2 | each | 125 | 250 |  |
| Harvest |  |  |  |  |  |
| Picking | 14000 | lb | 0.70 | 9800 |  |
| Packing | 14000 | lb | 1.50 | 21000 |  |
| Cooling and Handling | 14000 | lb | 0.65 | 9100 |  |
| Marketing and Brokerage Fees | 14000 | lb | 0.75 | 10500 |  |
| Labor (Machine) | 45.60 | hr | 13.15 | 600 |  |
| Labor (Non-machine) | 191.40 | hr | 11.8 | 2259 |  |
| Fuel - Gas | 50.46 | gal | 2.8 | 141 |  |
| Fuel - Diesel | 3.78 | gal | 2.3 | 9 |  |
| Oil and Lubricant |  |  |  | 22 |  |
| Machinery Repair |  |  |  | 19 |  |
| Interest on Operating Capital at @ 10\% |  |  |  | 792 |  |
| TOTAL OPERATING COSTS PER ACRE |  |  |  | 57050 |  |
| NET RETURNS ABOVE OPERATING COSTS |  |  |  | 47950 |  |
| CASH OVERHEAD COSTS: |  |  |  |  |  |
| Liability Insurance |  |  |  | 44 |  |
| Office Expenses |  |  |  | 350 |  |
| Interest- Cash Overhead Costs |  |  |  | 108 |  |
| Leaf Analysis |  |  |  | 20 |  |
| Soil Analysis |  |  |  | 25 |  |
| Field Sanitation |  |  |  | 270 |  |
| Organic Certification Charges |  |  |  | 300 |  |
| Property Taxes |  |  |  | 420 |  |
| Property Insurance |  |  |  | 294 |  |
| Investment Repairs |  |  |  | 442 |  |
| TOTAL CASH OVERHEAD COSTS |  |  |  | 2273 |  |
| TOTAL ALL CASH COSTS |  |  |  | 59322 |  |
| NET RETURNS ABOVE CASH COSTS |  |  |  | 45678 |  |
| NON-CASH OVERHEAD COSTS (CAPITAL RECOVERY) |  |  |  |  |  |
| Irrigation System |  |  |  | 317 |  |
| Land Rent |  |  |  | 2537 |  |
| Shop Building |  |  |  | 181 |  |
| Shop Tools |  |  |  | 44 |  |
| Establishment Costs- Accumulated Net Cash Cost |  |  |  | 94 |  |
| Bird Control-Net |  |  |  | 565 |  |
| Bird Control-Rest of Material (Post, Wire, Cement and Labor) |  |  |  | 191 |  |
| Equipment |  |  |  | 331 |  |
| TOTAL NON-CASH OVERHEAD COSTS |  |  |  | 4260 |  |
| TOTAL ALL COSTS |  |  |  | 63582 |  |
| NET RETURNS ABOVE TOTAL ALL COSTS |  |  |  | 41418 |  |

## Table 5. Monthly Cash Costs per Acre to Produce Organic Blueberries in San Luis Obispo, Santa Barbara, and Ventura Counties, 2007

| Beginning JAN 07 | Costs Per Acre (\$) |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | TOT |
| Ending DEC07 |  |  |  |  |  |  |  |  |  |  |  |  | AL |
| CULTURAL: |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Irrigate |  | 69 | 86 | 69 | 86 | 69 | 86 | 86 | 69 | 69 | 69 |  | 759 |
| Weed Control | 944 |  |  |  |  |  | 944 |  |  |  |  |  | 1888 |
| Mow Strip |  | 8 |  |  |  | 8 |  |  |  | 8 |  |  | 24 |
| Fungicide |  |  |  |  |  |  |  |  |  | 26 |  |  | 26 |
| Pruning |  |  |  |  |  |  |  | 172 |  |  |  |  | 172 |
| Wood Waste |  |  |  |  |  |  |  |  | 127 |  |  |  | 127 |
| Acidification-Sulfur |  |  |  |  |  |  |  |  |  | 44 |  |  | 44 |
| Acidification-Citric Acid |  | 98 | 100 | 98 | 100 | 98 | 100 | 100 | 98 | 98 | 98 |  | 988 |
| Fertilize (Agrilizer) |  | 86 | 87 | 86 | 87 | 86 | 87 | 87 | 86 | 86 | 86 |  | 862 |
| Fertilize (Iron Chelate) |  |  |  | 54 | 54 | 54 | 54 |  |  |  |  |  | 214 |
| Pollination |  |  | 250 |  |  |  |  |  |  |  |  |  | 250 |
| Bird Control | 84 | 84 | 84 | 84 | 84 | 84 |  |  |  |  |  |  | 502 |
| TOTAL CULTURAL COSTS | 1028 | 345 | 607 | 391 | 411 | 399 | 1271 | 445 | 380 | 331 | 253 | 0 | 5856 |
| HARVEST: |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Picking | 980 | 1470 | 1960 | 3920 | 1470 |  |  |  |  |  |  |  | 9800 |
| Packing | 2100 | 3150 | 4200 | 8400 | 3150 |  |  |  |  |  |  |  | 21000 |
| Cooling and Handling | 910 | 1365 | 1820 | 3640 | 1365 |  |  |  |  |  |  |  | 9100 |
| Marketing and Brokerage Fees | 1050 | 1575 | 2100 | 4200 | 1575 |  |  |  |  |  |  |  | 10500 |
| TOTAL HARVEST COSTS | 5040 | 7560 | 10080 | 20160 | 7560 |  |  |  |  |  |  |  | 50400 |
| Interest on Operating Capital | 56 | 81 | 110 | 208 | 94 | 26 | 37 | 41 | 44 | 46 | 49 | 0 | 792 |
| TOTAL OPERATING COSTS | 6124 | 7986 | 10797 | 20759 | 8065 | 425 | 1308 | 486 | 424 | 377 | 302 | 0 | 57048 |
| CASH OVERHEAD: |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Liability Insurance |  |  |  |  |  |  |  |  |  |  |  | 44 | 44 |
| Office Expenses |  |  |  |  |  |  |  |  |  |  |  | 350 | 350 |
| Interest- Cash Overhead Costs |  |  |  |  |  |  |  |  |  |  |  | 108 | 108 |
| Leaf Analysis |  |  |  |  |  |  |  |  |  |  |  | 20 | 20 |
| Soil Analysis |  |  |  |  |  |  |  |  |  |  |  | 25 | 25 |
| Field Sanitation |  |  |  |  |  |  |  |  |  |  |  | 270 | 270 |
| Organic Certification Charges |  |  |  |  |  |  |  |  |  |  |  | 300 | 300 |
| Property Taxes |  |  |  | 210 |  |  |  |  |  |  | 210 |  | 420 |
| Property Insurance |  |  |  | 147 |  |  |  |  |  |  | 147 |  | 294 |
| Investment Repairs | 37 | 37 | 37 | 37 | 37 | 37 | 37 | 37 | 37 | 37 | 37 | 37 | 442 |
| TOTAL CASH OVERHEAD COSTS | 37 | 37 | 37 | 394 | 37 | 37 | 37 | 37 | 37 | 37 | 394 | 1154 | 2273 |
| TOTAL CASH COSTS | 6161 | 8023 | 10834 | 21153 | 8102 | 462 | 1345 | 523 | 461 | 414 | 696 | 1154 | 59321 |

Table 6. Whole Farm Equipment, Investment, and Business Overhead Costs Based on a-10 Acre Organic Blueberry Farm in San Luis Obispo, Santa Barbara, and Ventura Counties, 2007

| EQUIPMENT |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Cash Ove | Costs (\$) |  |
| Year | Description | $\begin{gathered} \text { life } \\ \text { (Year) } \end{gathered}$ | Price <br> (\$) | Capital <br> Recovery (\$) | Insurance | Taxes | $\begin{gathered} \text { Total } \\ \text { Costs }(\$) \end{gathered}$ |
| 2007 | 70 HP 2WD Tractor | 12 | 28850 | 3522 | 111 | 159 | 3792 |
| 2007 | ATV 4WD | 7 | 4500 | 791 | 17 | 25 | 833 |
| 2007 | Bin Trailer \#1 | 15 | 1000 | 108 | 4 | 6 | 118 |
| 2007 | Mower - Rotary 5' | 5 | 3000 | 685 | 12 | 16 | 713 |
| 2007 | Power Sprayer | 10 | 3000 | 411 | 12 | 16 | 439 |
| TOTAL |  |  | 40350 | 5517 | 156 | 222 | 5895 |
| 60\% OF EQUIPMENT COSTS* |  |  | 24210 | 3310 | 94 | 133 | 3537 |

*Used to reflect a mix of new and used equipment.

| INVESTMENT |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

## ANNUAL BUSINESS OVERHEAD

| Description | Units Per | Price Per | Total |
| :--- | :---: | :---: | :---: |
| Cost (\$) |  |  |  |

Table 7. Hourly Equipment Costs to Produce Organic Blueberries in San Luis Obispo, Santa Barbara, and Ventura Counties, 2007

| Year Description | Actual <br> Hours <br> Used | Cost per hour (\$)* |  |  |  |  |  |  | Total Cost Per Hour |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Capital <br> Recovery | Cash overhead |  | $\begin{gathered} \text { Total } \\ \text { Cash } \\ \text { Overhead } \end{gathered}$ | Operating Expenses |  | Total Operating Expenses |  |
|  |  |  | Insurance | Taxes |  | Repairs | Fuel \& Lube |  |  |
| 200770 HP 2WD Tractor | 11 | 192.1 | 6.06 | 8.66 | 14.72 | 1.25 | 9.09 | 10.34 | 217.16 |
| 2007 ATV 4WD | 385 | 1.23 | 0.03 | 0.04 | 0.07 | 0.33 | 4.22 | 4.55 | 5.85 |
| 2007 Bin Trailer \#1 | 250 | 0.26 | 0.01 | 0.01 | 0.02 | 0.15 | 0.00 | 0.15 | 0.43 |
| 2007 Mower - Rotary 5' | 15 | 27.39 | 0.46 | 0.66 | 1.12 | 0.29 | 0.00 | 0.29 | 28.80 |
| 2007 Power Sprayer | 5 | 49.27 | 1.39 | 1.98 | 3.37 | 0.80 | 0.00 | 0.80 | 53.44 |

[^1]Table 8. Range Analysis: Analysis of Costs and Returns for Producing Organic Blueberries at Varying Yields and Prices in San Luis Obispo, Santa Barbara, and Ventura Counties, 2007

## Harvesting Costs $\quad 3.60$ \$ Per Pound

Costs per Acre and Pound at Varyiing Yields

|  | Yield (Pounds per Acre) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 9800 | 11200 | 12600 | 14000 | 15400 | 16800 | 18200 |
| OPERATING COSTS: |  |  |  |  |  |  |  |
| Cultural Cost (\$) | 5856 | 5856 | 5856 | 5856 | 5856 | 5856 | 5856 |
| Harvest Cost (\$) | 35280 | 40320 | 45360 | 50400 | 55440 | 60480 | 65520 |
| Interest on Operating Capital (\$) | 554 | 634 | 713 | 792 | 871 | 950 | 1030 |
| TOTAL OPERATING COSTS PER ACRE(\$) | 41690 | 46810 | 51929 | 57048 | 62167 | 67286 | 72406 |
| TOTAL OPERATING COSTS PER POUND (\$) | 4.25 | 4.18 | 4.12 | 4.07 | 4.04 | 4.01 | 3.98 |
| CASH OVERHEAD COSTS PER ACRE (\$) | 2273 | 2273 | 2273 | 2273 | 2273 | 2273 | 2273 |
| TOTAL CASH COSTS PER ACRE (\$) | 43963 | 49083 | 54202 | 59321 | 64440 | 69559 | 74679 |
| TOTAL CASH COSTS PER POUND (\$) | 4.49 | 4.38 | 4.30 | 4.24 | 4.18 | 4.14 | 4.10 |
| NON-CASH OVERHEAD COSTS PER ACRE (\$) | 4260 | 4260 | 4260 | 4260 | 4260 | 4260 | 4260 |
| TOTAL COSTS PER ACRE (\$) | 48223 | 53343 | 58462 | 63581 | 68700 | 73819 | 78939 |
| TOTAL COSTS PER POUND (\$) | 4.92 | 4.76 | 4.64 | 4.54 | 4.46 | 4.39 | 4.34 |

Net Returns per Acre Above Operating Costs at Varying Yield and Prices

|  | Yield (Pounds per Acre) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 9800 | 11200 | 12600 | 14000 | 15400 | 16800 | 18200 |
|  | Net Returns Per Acre Above Operating Costs (\$) |  |  |  |  |  |  |
| Price (\$ Per Pound) |  |  |  |  |  |  |  |
| 5.25 | 9760 | 11990 | 14221 | 16452 | 18683 | 20914 | 23144 |
| 6.00 | 17110 | 20390 | 23671 | 26952 | 30233 | 33514 | 36794 |
| 6.75 | 24460 | 28790 | 33121 | 37452 | 41783 | 46114 | 50444 |
| 7.50 | 31810 | 37190 | 42571 | 47952 | 53333 | 58714 | 64094 |
| 8.25 | 39160 | 45590 | 52021 | 58452 | 64883 | 71314 | 77744 |
| 9.00 | 46510 | 53990 | 61471 | 68952 | 76433 | 83914 | 91394 |
| 9.75 | 53860 | 62390 | 70921 | 79452 | 87983 | 96514 | 105044 |

Net Returns per Acre Above Cash Costs at Varying Yield and Prices


Net Returns per Acre Above Total Costs at Varying Yield and Prices


Table 9. Break-Even Prices (\$ Per Pound) of Organic Blueberry Production in San Luis Obispo, Santa Barbara, and Ventura Counties, 2007

|  | Break-Even Prices(\$ Per Pound) to Cover Costs Using our Yield Assumption |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Yield <br> (Pounds per Acre) | Operating |  |  |  |  |
| 14,000 | Costs | Cash | Total |  |  |

Table 10. Break-Even Yields (Pounds Per Acre) of Organic Blueberry Production in San Luis Obispo, Santa Barbara, and Ventura Counties, 2007

|  | Break-Even Yield (Pounds Per Acre) to Cover Costs Using Our Price Assumption |  |  |
| :---: | :---: | :---: | :---: |
| Price (\$ per pound) | Operating Costs | $\begin{aligned} & \text { Cash } \\ & \text { Costs } \\ & \hline \end{aligned}$ | Total <br> Costs |
| 7.50 | 7,607 | 7,910 | 8,478 |

## REFERENCES

American Society of Agricultural Engineers, 1994. American Society of Agricultural Engineers Standards Yearbook. Russell H. Hahn and Evelyn E. Rosentreter (ed.) St. Joseph, Missouri. 41st edition.

American Society of Farm Managers and Rural Appraisal, http://www.asfmra.org
Boelje, Michael D., and Vernon R. Eidman. 1984. Farm Management. John Wiley and Sons. New York, New York

California Certified Organic Farmers (CCOF), http://www.ccof.org/fees.php
High Bush blueberry Council, http://www.blueberry.org/
Jimenez, Manuel, Francis Carpenter, Richard H. Molinar, Kathryn Wright, Kevin R. Day (2005) Blueberry Research Launches Exciting New California Specialty Crop. California Agriculture. Vol. 59, No. 2.

Northwest Berry and Grape Information Network. Oregon State University, Idaho University and Washington State University, USDA.ARS, http://berrygrape.oregonstate.edu/category/fruit-growing/berry-crops/blueberry/

North America Blueberry Council, http://www.nabcblues.org/blueberry.htm
Small Farm Center, University of California Davis, http://www.sfc.ucdavis.edu/research/blueberry.html

## Etaferahu Takele

Area Farm Advisor, Agricultural Economist/Farm Management
University of California Cooperative Extension
21150 Box Springs Road
Moreno Valley, CA 92557
Tel. (951) 683-6491 Ext. 243
Fax (951) 788-2615
e-mail: ettakele@ucdavis.edu
website: http://groups.ucanr.org/farmgt

Ben Faber<br>Farm Advisor, Soils and Water, Avocados and Minor Subtropicals<br>University of California, Cooperative Extension<br>669 County Square Drive, \#100<br>Ventura, CA 93003-5401<br>Tel. (805) 645-1462<br>Fax: (805) 645-1474<br>e-mail: bafaber@ucdavis.edu<br>website: http://ceventura.ucdavis.edu

## Mark Gaskell

Farm Advisor, Specialty crops, Vegetables, Sustainable Agriculture and Small Farms University of California Cooperative Extension

624-A West Foster Road
Santa Barbara County
Santa Maria, CA 93455
Tel. (805) 934-6240
Fax: (805) 934-6333
e-mail: mlgaskell@ucdavis.edu
website: http://cesantabarbara.ucdavis.edu


[^0]:    The University of California, Cooperative Extension in compliance with Titles VI and VII of the Civil Rights Act of 1964, Title IX of the Education Amendments of 1972, Sections 503 and 504 of the Rehabilitation Act of 1973 does not discriminate on the basis of race, religion, color, national origins, sex, mental or physical handicaps or age in any of its programs or activities, or with respect to any of its employment policies, practices or procedures. Nor does the University of California does not discriminate on the basis of ancestry, sexual orientation, marital status, citizenship, medical condition (as defined in section 12926 of the California Government Code) or because the individuals are disabled or Vietnam era veterans (as defined the Vietnam Era Veterans Readjustment Act of 1974 and Section of the California Government Code). Inquiries regarding this policy may be directed to the Affirmative Action Director, University of California, Agriculture and Natural Resources, 300 Lakeside Drive, Oakland, California 94612-3560, (510) 987-0096

[^1]:    * Costs are based on $60 \%$ of the values of assets to reflect the mix of old and new equipment complements.

